1 / 26

Foundry-Institute

Foundry-Institute. Seminar Metallurgical defects of cast steel Claudia Dommaschk TU Bergakademie Freiberg Foundry Institute, Germany. Structure Gas cavities Oxide and slag inclusions, Nonmetallic inclusions Shrinkage cavities Hot tear Primary grain boundary fracture

claudette
Download Presentation

Foundry-Institute

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Foundry-Institute Seminar Metallurgical defects of cast steel Claudia Dommaschk TU Bergakademie Freiberg Foundry Institute, Germany 1

  2. Structure • Gas cavities • Oxide and slag inclusions, Nonmetallic • inclusions • Shrinkage cavities • Hot tear • Primary grain boundary fracture • Defects caused by heat treatment 2

  3. Gas cavities • Description and reasons: • Cavities in castings, especially in the upper parts of the castings • Formation during solidification because of degrease of gas solubility • often in combination with oxide and slag inclusions • formation of gas cavities depends on the concentration of oxygen, • nitrogen and hydrogen • the inner surface of the cavities is smooth 3

  4. Gas cavities 4

  5. Gas cavities • Prevention: • use of dry materials and ladles • use of clean charge • degasification of the melt • look at the mould sands (permeability of gas, vent…) 5

  6. Oxide and slag inclusions, nonmetallic inclusions • Description and reasons: • Classification: endogenous and exogenous inclusions • endogenous inclusions are caused by the reaction products during the • melting process (especially during deoxidation) • exogenous inclusion are caused by other materials in the melt • (e.g. refractory lining) • thin fluid slag can precipitate at the grain boundaries  danger of • formation of hot tears is higher • Classification of size: • Macro inclusions > 20 μm • Micro inclusions < 20 μm 6

  7. Oxide and slag inclusions, nonmetallic inclusions Slag inclusions GX3CrNiMoN17-13-5 GX2CrNiMo18-14-3 7

  8. Oxide and slag inclusions, nonmetallic inclusions • Prevention: • use of clean charge • optimization of gating and feeding system (lamellar flow) • decrease of the dissolved oxygen • decrease of the overheating temperature 8

  9. Oxide and slag inclusions, nonmetallic inclusions • Example: G42CrMo4 • nonmetallic inclusions arise by • reason of the reactions during the • melting process 9

  10. Shrinkage cavities • Description and reasons: • specific volume of melt is higher than • the specific volume of solid  • contraction during solidification and • cooling • feeding is necessary – if the feeding • is not optimal  formation of • shrinkage cavities • the shrinkage volume of cast steel is • about 4-7 % • the inner surface is rough Liquid shrinkage Solidification shrinkage Specific volume shrinkage RT TS TL TP 10

  11. Shrinkage cavities GE 300 (GS 60) 11

  12. Shrinkage cavities • Prevention: • use of optimal feeding system (calculation and simulation) • warranty of directional solidification • use of exothermic feeder sleeve • decrease of the pouring temperature 12

  13. Hot tear • Description and reasons: • hot tears are intercrystalline discontinuity • cracks run along the grain boundaries • the risk of cracks at alloys with a high freezing range is higher than with • a small freezing range • the reason are stresses during solidification because of hindered • contraction (residual stress) • the main reason for formation of hot tears are the geometry of casting • if melt can flow into the crack - partial or completely annealed hot tears • are possible 13

  14. Hot tear Influence of Manganese and Sulphur content on the inclination of hot tears Influence of Carbon content on the inclination of hot tears • Sulphur is very dangerous • - Manganese compensate • Maximum of the hot tearing tendency • by ~0.4 % C • - Low tendency below 0.2 % 14

  15. Hot tear 15

  16. Hot tear Partial annealed hot tear 16

  17. Hot tear • Prevention: • design appropriate to casting, prevention of residual stresses, wide • difference in the wall thickness and hot spots) • prevention of hot sand effects 17

  18. Primary grain boundary fracture (“Rock candy or shell fracture”) Al-N-precipitations G24Mn5 • Caused by Al-N-precipitations • high content of Al and N and thick-walled castings 18

  19. Defects caused by heat treatment • GS33NiCrMo • left: quenching and tempering not correct – ferrite, pearlite and bainite  • lower ductility 19

  20. Defects caused by heat treatment • G24Mn5 (thick-walled casting) • quenching and tempering not complete – ferrite, pearlite and bainite • different structure and lesser properties 20

  21. Defects caused by heat treatment • G30Mn5 GS25 • Decarburization of the surface area caused by heat treatment without • protective atmosphere  Chance of properties in the surface area 21

  22. Defects caused by heat treatment • GX3CrNiMo20-18-7 • temperature of solution heat • treatment to low and/or cooling • rate not correct  • precipitation of delta-ferrite  • these components are brittle  • lower ductility 22

  23. Defects caused by heat treatment • GX 120Mn13 • temperature of austenitizing to high  • coarse grain  bad mechanical properties 23

  24. Defects caused by heat treatment • G105Cr4 = hypereutectoid cast steel • hardening crack • structure: coarse martensite and • residual austenite • reason: temperature of austenitizing • and cooling rate to high 24

  25. Defects caused by heat treatment GX 5CrNiMo19-11-2 • intercrystalline corrosion • heat treatment not correct  precipitation of Cr-carbides on the grain • boundary  corrosion was possible 25

  26. 27

More Related