510 likes | 641 Views
Nonlocal Dynamics in String Field Theory and cosmological applications. Liudmila Joukovskaya, CTC, DAMTP, University of Cambridge. 14 April 2009, 2 nd Conference on String Field Theory and Related Aspects. Plan of the talk. General Motivations
E N D
Nonlocal Dynamics in String Field Theory and cosmological applications Liudmila Joukovskaya, CTC, DAMTP, University of Cambridge 14 April 2009, 2nd Conference on String Field Theory and Related Aspects
Plan of the talk • General Motivations • Construction of rolling solutions in the truncated SFT a) Truncated SFT (nonlocality) b) Space homogeneous rolling solutions • Cosmological motivations for nonlocal theories • SFT as a possible framework for cosmology • Rolling cosmological solutions
Motivations • Cosmological Motivations • Theoretical Motivations • String Field Theory as a possible framework for Cosmology
Witten’s Cubic Open String Field Theory E. Witten, Nucl. Phys. B 268 (1986) 253 V.A. Kostelecky, S.Samuel, Phys. Lett. B 207 (1988) 169 V.A. Kostelecky,S.Samuel, Phys. Lett. B 207 (1988) 169, P.West, Phys.Lett.B548:92-96,2002 N. Moeller, A. Sen, B. Zwiebach, JHEP, 08 (2000) 039 Cubic Fermionic String Field Theory I.Aref’eva, P.Medvedev, A.Zubarev Phys.Lett.B240 (1990)356 C.Preitschopf, C.Thorn, S.Yost, Nucl. Phys. B337 (1990) 363 I.Arefeva, D.Belov, A.Koshelev, P.Medvedev, Nucl.Phys.B638 (2002)3
In the approximation u=U we have a more simple approximate action
Level truncation Covariant String Field Theory
Stress Tensor N. Moeller, B. Zwiebach, JHEP, 10 (2002) 034 H. Yang, JHEP 11 (2002) 007 I. Aref’eva, L.J., A. Koshelev, JHEP, 09 (2003) 012
Solution construction for Minkowski case Ya. Volovich, JPA, 2003; Ya. Volovich, V.S. Vladimirov, Theor. Math. Phys. 2004; L.J., Theor. Math. Phys. 2006 or arxiv: 0708.0642[hep-th]; V.S. Vladimirov, arxiv: 0705.4600 D. V. Prokhorenko, math-ph/0611068; G. Calcagni, G. Nardelli, arxiv: 0708.0366
Standard Cosmological Concordance Model is emerging during the last 10 years …
Big Bang/Inflationary Cosmology Picture taken from:cosmology.berkeley.edu
Cyclic/Ekpyrotic Cosmology N. Turok, P.J. Steinhardt, J. Khoury, B. Ovrut
A great discovery of the last few years is the discoveryof the current accelerated expansion of the Universe Observations (1998) of very distant supernovae demonstrated that the Universe is expanding with an acceleration. Ia Supernovae: S.Perlmutter et al., A.Riess et al., 1998; This acceleration seems to be explicable by the presence of a new component of matter called dark energy (DE). DE is a special unknown form of matter with negative pressure and it provides universal repulsive forces (antigravity).
Standard Cosmological Concordance Model is emerging during the last 10 years… String Field Theory as a possible cosmological framework
Non-locality and Cosmology • Non-local gravity ad-hoc: Arkani-Hamed at al hep-th/0209227; Khoury, hep-th/0612052; T.Biswas,A.Mazumdar, W.Siegel, hep-th/0508194, G.Dvali, S. Hofmann, JKhoury,hep-th/0703027 S.Deser, R.Woodard, arXiv:0706.2151S. • Non-local SFT: I. Aref’eva, LJ, A. Koshelev, JHEP, 2003; Aref’eva AIP Conf Proc. 2004; I.Aref’eva, LJ, JHEP, 2005; I. Aref’eva, Koshelev, Vernov 2005; G.Calcagni, JHEP, 2005 LJ, PRD 2007; G. Calcagni,M.Montobbio, G.Nardelli; PRD 2007; N. Barnaby, T. Biswas, J.M. Cline, JHEP 2007 J.Lidsey, PRD 2007; D. Mulryne, N. Nunes, PRD 2008; A. Koshelev, S. Vernov; I. Aref’eva, N.Bulatov, LJ, S. Vernov 2009;
Einstein equations FriedmannCosmology + Cosmological principle Isotropic Homogeneous K=+1 (3-sphere), k=0 (plane), k=-1 (3-hyperboloid)
Numerical Scheme for Solution Construction II - continuation
Does there exist the rolling tachyon solution in the case of cubic potential?
Numerical solutions a. b.
Main results presented in this talk: • Construction of rolling cosmological solutions for: • Tachyon field describing non-BPS branes in Friedmann-Robertson-Walker background (Does exist in Minkowski case AJK) • Tachyon field of open bosonic string in Friedmann-Robertson-Walker background (Does not exist in the Minkowski case (Moeller, Zwiebach) )