1 / 29

Intro to Computer Math

Intro to Computer Math. Binary – Octal - Hexadecimal. B 1011 0100 1100 0x B 4 C. Binary: What is it???. Electronics: 0,1 is easy numbering system Data is stored as 32 or 64 bits of 0s and 1s: Registers, Memory, Disk, CDs, DVDs, ROM, Data Communications Bit = 1 binary digit: 1 or 0

Download Presentation

Intro to Computer Math

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Intro to Computer Math Binary – Octal - Hexadecimal B 1011 0100 1100 0x B 4 C

  2. Binary: What is it??? • Electronics: 0,1 is easy numbering system • Data is stored as 32 or 64 bits of 0s and 1s: • Registers, Memory, Disk, CDs, DVDs, ROM, Data Communications • Bit = 1 binary digit: 1 or 0 • Boolean: True = 1, False = 0 • ASCII: 8 bits • Number = 8 or 16 or 32 or 64 bits

  3. Octal – Hexadecimal: What is it? • 1s & 0s are tedious: • 1010 0101 1111 0011 1100 0000 1001 0110 1110 0001 • Hexadecimal: 0x a 5 f 3 c 0 9 6 e 1 • Octal: 5 1 3 7 1 7 0 0 4 5 5 6 0 4 • Octal and Hexadecimal are compatible; powers of 2; easy representations of binary • Numbering Systems: • Base 2: Binary • Base 8: Octal • Base 10: Decimal • Base 16: Hexadecimal

  4. Why is it Useful? • Uses include: • UNIX Permissions: • 740 = Self: Read, Write, Execute; Group: Read; Others: Null • Data Communications: Meaning of: • Transmission: 7E 24 35 37 3a b3 fd 00 23 33 fa 4c 5d da 98 62 31 11 a2 7f 7e • Routing tables: 4a.62.33.c0/26 • Data: Setting flags, clearing bits, efficient storage • Engineering: Designing and working with memory • Debugging: Core dumps

  5. Look at Base 10 - Decimal Decimal System Observations Modulo 10 10 = 101 100 = 102 1000 = 103 1234 = (1x103) + (2x102) + (3x101) + 4 • 0 1 2 3 4 5 6 7 8 9 • 10 11 12 13 14 15 16 17 18 19 • 21 22 23 24 25 26 27 28 29 • 30 31 32 33 34 35 36 37 38 39

  6. Look at Base 2 - Binary Binary System Observations Modulo 2 10 = 21 = 2 100 = 22 = 4 1000= 23 = 8 10112 = (1x23) + (0x22) + (1x21) + 1 = 1110 • 0 • 1 • 10 11 • 100 101 110 111 • 1000 1001 1010 1011 • 1100 1101 1110 1111 • 10000 10001 10010 10011 • 10100 10101 10110 10111

  7. Look at Base 8 - Octal Octal System Observations Modulo 8 10 = 81 = 8 100 = 82 = 64 1000= 83 = 512 12348 = (1x83) + (2x82) + (3x81) + 4 = 66810 • 0 1 2 3 4 5 6 7 • 10 11 12 13 14 15 16 17 • 21 22 23 24 25 26 27 • 31 32 33 34 35 36 37 • … • 71 72 73 74 75 76 77 • 100 101 102 103 104 105 106

  8. Look at Base 16 - Hexadecimal Hexadecimal System Observations Modulo 16 10 = 161 = 16 100 = 162 = 256 1000= 163 = 4096 1a3f16 = (1x163) + (ax162) + (3x161) + f = 671910 • 0 1 2 3 4 5 6 7 8 9 a b c d e f • 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f • 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f • … • f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff • 100 101 102 103 104 105 106 107 108 109 10a 10b 10c 10d 10e 10f

  9. Working with Base 2: Binary • Each binary digit is a double of the digit to its right: • 1 1 1 1 1 1 1 1 1 • 256 128 64 32 16 8 4 2 1 • Binary can be noted as: B1011 or as 10112 • So converting binary to decimal: (~=NOT) • B1011 = 8 + ~4 + 2 + 1 = 11 • B101010 = 32 + ~16 + 8 + ~4 + 2 + ~1 = 32 + 8 + 2 = 42 • What is B01010101?

  10. Adding with Binary Equations with Carries Obvious Equations 1 + 1 = 10 100 + 11 = 111 1001 + 100 = 1101 • B 1 1 1 1 1 1 1 1 • +B 1 0 0 1 1 1 0 0 • B11 0 0 1 1 0 1 1

  11. Adding with Binary Equations with Carries Obvious Equations 1 + 1 = 10 100 + 11 = 111 1001 + 100 = 1101 • carry:1 1 1 1 1 • B 1 1 1 1 1 1 1 1 • +B 1 0 0 1 1 1 0 0 • B11 0 0 1 1 0 1 1 • Sum: 3 2 2 3 3 2 1 1

  12. NOT Operation ~ Examples: NOT NOT Truth Table • The opposite of 0 • is 1 • Not_flag() • If flag = false • flag = true • else flag = false ~0 = 1 ~1 = 0 ~1011=0100 ~0101=1010

  13. AND Operation - & Examples: AND AND Truth Table • If (you are >=18 AND • you are registered to • vote) then • You can vote • If (a==b && a==c) • print(“a = b = c”); 1 & 1 = 1 0 & 0 = 0 1 & 0 = 0 0 & 1 = 0

  14. OR Operation - | Examples: OR OR Truth Table • If (you are born in US OR you pass Citizen exam) then • You are US Citizen • If (a==b | a==c) • print(“a is b or c”); 1 | 1 = 1 0 | 0 = 0 1 | 0 = 1 0 | 1 = 1

  15. XOR Operation - ⊕ Examples: XOR XOR Truth Table • If (a!=b ) • print(“no match = TRUE”); • Uses: Encryption, etc. 1 ⊕ 1 = 0 0 ⊕ 0 = 0 1 ⊕ 0 = 1 0 ⊕ 1 = 1

  16. Anding/Oring Longer Numbers AND Operation OR Operation 1011 0111 | 0111 0000 1111 0111 0000 0000 | 0101 0000 • 1011 0111 • & 0111 0000 • 0011 0000 • 1100 0011 • &1111 0000

  17. Why ANDs and ORs? AND Or Useful for turning on bits Set a flag Set a value into a field • Useful for turning off bits • Clear a field • Clear a flag

  18. Converting Base 16 -> Base 10 Method 1: Convert to Binary, then Decimal: Method 2: Use division remainders:  Convert from base 10 to base N (Example base 2): Number / 2 ->remainder=>digit0 -> quotient / 2 -> remainder =>digit1 -> quotient / 2 -> remainder =>digit2 • 0x1af = 0001 1010 1111 • = 20 + 21 + 22 + 23 + 25 + 27 + 28 • = 1 + 2 + 4 + 8 + 32 + 128 + 256 • = 43110 • 0x456 = 0100 0101 0110 • = 210+26+24+22+21 • = 1024 + 64 + 16 + 4 + 2 • = 111010

  19. Converting Base 16 -> Base 10 Example Method 2: Method 2: Use division remainders:  Convert from base 10 to base N Number / n ->remainder=>digit0 -> quotient / n -> remainder =>digit1 -> quotient / n -> remainder =>digit2 Example 2: Convert 3610 into base 16: 36/16 ->4 2/16 ->2 3610 = 2416 • Example 1: Convert 3610 into binary: • Quotient/2 ->Remainder • 36/2 ->0 • 18/2 ->0 • 9/2 ->1 • 4/2 ->0 • 2/2 ->0 • 1/2 ->1 • 3610 = 1001002

  20. Forming a negative Number 1s Complement 2s Complement 0=0000 1=0001 -1=1111 2=0010 -2=1110 3=0011 -3=1101 4=0100 -4=1100 Total: +7 -8 • 0=0000 -0=1111? • 1=0001 -1=1110 • 2=0010 -2=1101 • 3=0011 -3=1100 • 4=0100 -4=1011 • Total: +7 -7

  21. Signed & Unsigned Numbers Assumes 1-byte storage

  22. Signed & Unsigned Integers • Signed integers • Use when numbers may be negative • To create negative numbers, the high-order (top) bit is the signed bit. • 0=Positive Number • 1=Negative Number • Unsigned integers • Use when all numbers are POSITIVE. • No overflow to negative numbers are possible then • Accuracy - Security: • Do you want positive only – or positive & negative? • Signed: Incrementing goes from large positive to large negative.

  23. Converting to Decimal: Powers of Two • The sign bit (bit 7) indicates both sign and value: • If top N bit is ‘0’, sign & all values are positive: top set value: 2N • If top N bit is ‘1’, sign is negative: -2N • Remaining bits are calculated as positive values: • 10101010 = -27+ 25 + 23 + 21 = -128 + 32 + 8 + 2 = -86 • 01010101 = 26+ 24 + 22 + 20 = 64 + 16 + 4 + 1 = 85

  24. Changing Signs: Two’s Compliment • A positive number may be made negative and vice versa using this technique • Method: Take the inverse of the original number and add 1. • Original: 01010101 = 85 10101011 = -85 • invert: 10101010 01010100 • add 1: +1 +1 • sum: 10101011 = -85 01010101 = 85

  25. Changing Signs: Two’s Compliment • Why does this work? • Identity + Inverse = -1 • Number: 10101010 • Inverse: 01010101 • Sum: 11111111 = -1 • If x + x’ = -1 • Then x + (x’ + 1) = 0 • And x’ + 1 = -x

  26. Shifting Bits Shift Left Shift Right E.g.: 0xa9 = 1010 1001 Shift right 1: 0101 0100 Shift right 1: Shift right 2: New hexadecimal value: • E.g.: 0xa9 =1010 1001 • Shift left 1: 0101 0010 • Shift left 1: • Shift left 2: • New hexadecimal value:

  27. Shifting is useful • Move bits into position • Extract a field • Example: • 1.0111011 x 2101 • Sign = 0 (positive) Exponent = B101 = 5 • Shift and Or all fields together to get float value

  28. Conclusion Binary – Octal - Hexadecimal • Computers operate in binary • It is important to ‘speak’ binary and hexadecimal • Base 2 & 16 will be used in a number of other courses

More Related