1 / 55

Maxime Lefrançois & Fabien Gandon Edelweiss – INRIA Sophia-Antipolis – France

ULiS : An Expert System on Linguistics to Support Multilingual Management of Interlingual Semantic Web Knowledge bases. Maxime Lefrançois & Fabien Gandon Edelweiss – INRIA Sophia-Antipolis – France { Maxime.Lefrancois | Fabien.Gandon }@ inria.fr. MSW 2011.

clint
Download Presentation

Maxime Lefrançois & Fabien Gandon Edelweiss – INRIA Sophia-Antipolis – France

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ULiS: An Expert System on Linguisticsto Support Multilingual Managementof Interlingual Semantic Web Knowledge bases Maxime Lefrançois & Fabien Gandon Edelweiss – INRIA Sophia-Antipolis – France {Maxime.Lefrancois|Fabien.Gandon}@inria.fr • MSW 2011

  2. multilingual access to the web of dataThe ULiSproject >31 billion RDF triples 295 data sets Interlinked by >503 million RDF links 3000 < naturallanguages < 7000 ? Lefrançois & Gandon, ULiS.

  3. OUTLINE • The Meaning-TextTheory • The ULiSproject: multilingualaccess to web of data • The ILexicOn : defining interlingual lexical units Proposal 1: An architecture thatunlocksmotivating scenarios Proposal 2: A formalway to representlexicographicdefinitions Lefrançois & Gandon, ULiS.

  4. 1. The Meaning-TextTheory Lefrançois & Gandon, ULiS.

  5. The Meaning-TextTheory A theoretical linguistic framework to construct models of natural language Mel’čuk et. al., late 70’s > today Lefrançois & Gandon, ULiS.

  6. The Meaning-TextTheory • Systems of explicit rules • that express correspondences between meaning and text SemRs • 7 levels of linguistic representation • For a set of synonymous utterances DSynRs SSynRs DMorphRs SMorphRs DPhonRs SPhonRs Lefrançois & Gandon, ULiS.

  7. The Meaning-TextTheory • The masterpiece: • The Explanatory Combinatorial Dictionary Data Meta- Ontology Description of the Explanatory Combinatorial Dictionary Explanatory Combinatorial Dictionary Explantory: Formalsemanticexplanations Combinatorial: Lexical combinations SemRs DSynRs SSynRs DMorphRs SMorphRs DPhonRs SPhonRs Lefrançois & Gandon, ULiS.

  8. Structure of the ECD entry Semantic zone: (formal?) (text or SemR?) lexical definition of lexical units Semantic actants: arguments of the semanticpredicate denotational vs. connotationalsemanticelements(ex: EN hot air, FR wind, RU water). • Phonological/Graphematic zone: • orthograph + prosody • The cooccurrence zone Lefrançois & Gandon, ULiS.

  9. Structure of the ECD entry- The cooccurrence zone Morphologicalsub-zone: inflections, derivations. Syntacticsub-zone: Government pattern Correspondance semantic – syntax (based on Dependencygrammars) ways to express a semanticpredicate in the language How the lexical unit participates in specific constructions as a dependent Lexical sub-zone semanticderivations and collocations Stylisticsub-zone Usage labels Pragmaticsub-zone real-life situations where expressions are appropriate. Lefrançois & Gandon, ULiS.

  10. Structure of the ECD entry- Examples of lexical functions lexical functions : paradigmatic Syn(telephoneV) = phoneV Anti Conv21(preced) = follow Gener(republic) = state Figur(rain) = curtain (a curtain of rain) S0(analyse) = analysis A0(city) = urban V0(analysis) = analyse Adv0(slow) = slowly S1(teach) = teacher ; S2(teach) = subject ; S3(teach) = pupil; … 19 in total Lefrançois & Gandon, ULiS.

  11. Structure of the ECD entry- Examples of lexical functions lexical functions : syntagmatic Magn(laughV) = one’shead off Bon(service) = first-class Locin(height) = at [a height of…] Oper1(supportN) = [to] lend [~ to N] Oper2(supportN) = [to] receive [~ to N] Func1(blownN) = comes [from ~] … 34 in total + non-standard lexical functions WithNoSugar(coffee) = black Lefrançois & Gandon, ULiS.

  12. ? 2. The ULiS project:Multilingual access to the web of data Lefrançois & Gandon, ULiS.

  13. Universal Networking Language • +RDF? A pivot-based NLP technique • +MTT? Interlanguage Convert Deconvert Lefrançois & Gandon, ULiS.

  14. The ULiSproject a UniversalLinguisticSystem Interlanguage Convert Deconvert Lefrançois & Gandon, ULiS.

  15. The ULiSproject a UniversalLinguisticSystem to redesign Pivot-based NLP technique 100% using ULiS Semantic Web formalisms Meaning-TextTheory compliantwith Lefrançois & Gandon, ULiS.

  16. 2.The ULiSproject Scenario Lefrançois & Gandon, ULiS.

  17. The ULiSproject - scenario - Machine Translation - - The RDF-World RDF interlingual representations IR RDF • John01 kill@past Mary01. • John01 kill@past Mary01. • John killed Mary • John01 tuer@past Mary01. • John01 tuer@past Mary01 • John a tué Mary RDFsituationalrepresentations • SREN RDF • SRFR RDF InputTEXT John killed Mary. Output1TEXT John a tué Mary. Lefrançois & Gandon, ULiS.

  18. The ULiSproject - scenario - Machine Translation - - The RDF-World RDF interlingual representations • John01 kill@past Mary01. • John01 kill@past Mary01. • John killed Mary • John01 tuer@past Mary01. • John01 tuer@past Mary01 • John a tué Mary RDFsituationalrepresentations John killed Mary. John a tué Mary. Lefrançois & Gandon, ULiS.

  19. The ULiSproject - scenario - Machine Translation - Management of Interlingual KnowledgeBases - The RDF-World IKBRDF IDBpedia X RDF ikb:John01 SPARQLRDF + X RDF • SELECT ?personWHERE {?person ikb:kill ikb:Mary01. } SPARQL Request RDF Output RDF interlingual representations IR RDF IR RDF • Whokill@past@? Mary01 • Whokill@past@? Mary01 • Whokilled Mary ? • John01 kill@past Mary01. • John01 kill@past Mary01. • John killed Mary RDFsituationalrepresentations SREN RDF SREN RDF InputTEXT Whokilled Mary? John killed Mary. Output2TEXT Lefrançois & Gandon, ULiS.

  20. The ULiSproject - scenario - Machine Translation - Management of Interlingual KnowledgeBases - The RDF-World IDBpedia ikb:John01 • SELECT ?personWHERE {?person ikb:kill ikb:Mary01. } SPARQL Request RDF Output RDF interlingual representations • John01 kill@past Mary01. • John01 kill@past Mary01. • John killed Mary • Whokill@past@? Mary01 • Whokill@past@? Mary01 • Whokilled Mary ? RDFsituationalrepresentations Whokilled Mary? John killed Mary. Lefrançois & Gandon, ULiS.

  21. The ULiSproject - scenario - Management of the UniversalLinguisticKnowledge base - Machine Translation - Management of Interlingual KnowledgeBases The RDF-World IKBRDF ULKRDF X RDF SPARQLRDF + X RDF SPARQL Request RDF Output RDF interlingual representations IR RDF IR RDF RDFsituationalrepresentations SRFR RDF SRFR RDF • SRFR RDF InputTEXT Output1TEXT Output2TEXT Lefrançois & Gandon, ULiS.

  22. 2.The ULiSproject Architecture Lefrançois & Gandon, ULiS.

  23. The ULiSproject - architecture Data Meta- Ontology Description of the Explanatory Combinatorial Dictionary Explanatory Combinatorial Dictionary SemRs DSynRs SSynRs DMorphRs SMorphRs DPhonRs SPhonRs Lefrançois & Gandon, ULiS.

  24. The ULiSproject - architecture InterlingualKnowledgeBase • X RDF Data Meta- Ontology Description of the Explanatory Combinatorial Dictionary Explanatory Combinatorial Dictionary SemRs DSynRs SSynRs DMorphRs SMorphRs DPhonRs SPhonRs Lefrançois & Gandon, ULiS.

  25. The ULiSproject - architecture InterlingualKnowledgeBase • X RDF INTERLINGUAL NOT INTERLINGUAL = SITUATIONAL • +RDF! Lefrançois & Gandon, ULiS.

  26. The ULiSproject - architecture InterlingualKnowledgeBase • X RDF ILexiMOn « Interlingual Lexical Meta-Ontology » ILexicOn pure interlingual features of the ECD • IRs RDF • SRs RDF DSynRs SSynRs • SLexicOn • Other features of the ECD DMorphRs SLexiMOn « SituationalLexical Meta-Ontology » SMorphRs DPhonRs SPhonRs Lefrançois & Gandon, ULiS.

  27. The ULiSproject - architecture • InterlingualKnowledgeBase • (ikb:isFrom,rdfs:range,ikb:Country) • (ikb:isFrom,rdfs:domain,ikb:Person) • X RDF • (ex:Maxime,ikb:isFrom,geo:France) ILexiMOn ileximon:ILexicalUnit ILexicOn ilexicon:Person • IRs RDF • ex:John01 • SRs RDF DSynRs SSynRs • SLexicOn • enlexicon:Person • eslexicon:Persona • frlexicon:Personne DMorphRs SLexiMOn sleximon:SLexicalUnit SMorphRs DPhonRs SPhonRs Lefrançois & Gandon, ULiS.

  28. The ULiSproject - architecture InterlingualKnowledgeBase • X RDF IKB = KB + anchors + transformation rules ILexiMOn « Interlingual Lexical Meta-Ontology » ILexicOn pure interlingual features of the ECD • IRs RDF • SRs RDF DSynRs SSynRs • SLexicOn • Other features of the ECD DMorphRs SLexiMOn « SituationalLexical Meta-Ontology » SMorphRs DPhonRs + Links + Transformation rules SPhonRs Lefrançois & Gandon, ULiS.

  29. The ULiSproject – Done/ To do ? InterlingualKnowledgeBase • X RDF IKB = KB + anchors + transformation rules ILexiMOn « Interlingual Lexical Meta-Ontology » ILexicOn pure interlingual features of the ECD • IRs RDF Formal lexicographic definitions of interlingual lexical units… • SRs RDF DSynRs • in RDF! SSynRs • SLexicOn • Other features of the ECD DMorphRs SLexiMOn « SituationalLexical Meta-Ontology » SMorphRs DPhonRs + Links + Transformation rules SPhonRs Lefrançois & Gandon, ULiS.

  30. The ULiSproject – Bricks (I)SLexicOn (I)SLexiMOn (I)ISlexicOn (I)ILexiMOn (I)SKOS, (I)FOAF, … (I)SPIN (I)OWL (I)RDF-S (I)RDF Lefrançois & Gandon, ULiS.

  31. 3. The ILexicOn:defining interlingual lexical units Lefrançois & Gandon, ULiS.

  32. With the Semantic Web formalisms, Wedesigned a simple ILexiMOn… Interlingual Lexical Units Classes may beformallydefined in the ILexicOn… …by supporting the projection of theirsemanticdecompositionon themselves Lefrançois & Gandon, ILexicOn.

  33. The threelayers owl:Class owl:ObjectProperty xsd:boolean OWL owl:intersectionOf owl:propertyChainAxiom is-a is-a owl:unionOf owl:hasSelf is-a subClassOf subClassOf :ISemanticRelation :ILexicalUnit :onISemanticRelation range is-a core-ILexiMOn layer domain subClassOf :allValuesFrom range domain :ILexicalPrimitive is-a :isObligatory domain range :Entity :hasEntity allValuesFrom onISemanticRelation :State true isObligatory :Person onISemanticRelation allValuesFrom ILexicOn layer A B class/instance A is an instance of B intersectionOf property A B :Alive A is a subClass of B B A p A B C Data-layer hasEntity :Mary01 :Alive01 A islinked to B throughproperty p A is the intersection of B and C Lefrançois & Gandon, ULiS.

  34. ILUcILUi • ILexicOn • IRs RDF Die:Die01 Die Person:Mary01 1.Person Lefrançois & Gandon, ULiS.

  35. Conceptual participants Rely on non-INTERLINGUAL features Semantic Actants Lefrançois & Gandon, ULiS.

  36. Die< End< • Event Lefrançois & Gandon, ULiS.

  37. ConPinheritance • 1.Time • 1.Time Die< End< • Event Lefrançois & Gandon, ULiS.

  38. ConPinheritance • 1.Time • 1.Time Die< End< • Event • ilexicon:Event a ileximon:ILexicalUnit, • owl:intersectionOf ([ a ileximon:ILexicalPrimitive, • ileximon:onISemanticRelationilexicon:hasTime, • ileximon:allValuesFromilexicon:Time, • ileximon:isObligatory "true"^^xsd:boolean. • ] • ... • ). • ilexicon:End a ileximon:ILexicalUnit, • owl:intersectionOf ( ilexicon:Event • ... • ). • ilexicon:Die a ileximon:ILexicalUnit, • owl:intersectionOf ( ilexicon:End • ... • ). Lefrançois & Gandon, ULiS.

  39. ConP partial inheritance • 1.Time Die < End • 1.Alive< 1. • State • ilexicon:Die a ileximon:ILexicalUnit, • owl:intersectionOf ( ilexicon:End • [ a ileximon:ILexicalPrimitive, • ileximon:onISemanticRelationilexicon:hasState, • ileximon:allValuesFromilexicon:Alive, • ileximon:isObligatory "true"^^xsd:boolean. • ] • ... • ). 1.Person • 1.Person< 1. Entity Lefrançois & Gandon, ULiS.

  40. ? ConP composition • 1.Time hasTime Die Die < End • NamedConP slots • (an infinitenumber of) lexicalizedconceptual relations hasState • 1.Alive hasDead ? hasEntity = 1.Person • 1.Person Lefrançois & Gandon, ULiS.

  41. ConP composition • 1.Time hasTime hasState/ hasEntity Die hasState hasDead • 1.Alive is equivalent to: hasDead (hasState/hasEntity)<hasDead ? hasEntity = 1.Person • 1.Person Ilexicon:hasDeadowl:propertyChainAxiom ( ilexicon:hasState, ilexicon:hasEntity), rdfs:domainilexicon:Die, rdfs:rangeilexicon:Person. Lefrançois & Gandon, ULiS.

  42. Kill<Cause<Event Lefrançois & Gandon, ULiS.

  43. 1.Time hasTime Kill<Cause<Event hasEvent hasAgent • 1.Person • 1.Die<Event Lefrançois & Gandon, ULiS.

  44. 1.Time hasTime • 1.Time Kill hasTime hasEvent hasAgent • 1.Person • 1.Die<Event hasDead 1.Person Lefrançois & Gandon, ULiS.

  45. ConP composition ( hasEvent / hasDead ) < hasKilled • 1.Time hasTime • 1.Time Kill hasTime hasEvent hasAgent • 1.Person • 1.Die hasDead hasKilled 1.Person Lefrançois & Gandon, ULiS.

  46. ? ConPmerging • 1.Time hasTime • 1.Time Kill hasTime hasEvent hasAgent • 1.Person • 1.Die hasDead hasKilled 1.Person Lefrançois & Gandon, ULiS.

  47. ConPmerging ( hasEvent / hasTime ) < hasKillTime • 1.Time hasTime • 1.Time Kill hasKillTime hasTime hasEvent hasAgent • 1.Person • 1.Die hasDead hasKilled 1.Person Lefrançois & Gandon, ULiS.

  48. ConPmerging ( hasEvent / hasTime ) < hasKillTime < hasTime hasTime • 1.Time hasKillTime Kill hasTime hasEvent hasAgent • 1.Person • 1.Die hasDead hasKilled 1.Person Lefrançois & Gandon, ULiS.

  49. Optional / obligatoryConP hasTime • ?.Person • 1.Time hasBeneficiary hasKillTime Kill hasTime hasEvent hasAgent • 1.Person • 1.Die hasDead hasKilled 1.Person Lefrançois & Gandon, ULiS.

  50. Infanticide<Kill Lefrançois & Gandon, ULiS.

More Related