1 / 44

B . Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

Overview of (selected) Belle and BaBar results. B. Golob, Belle Collaboration University of Ljubljana Jo ž ef Stefan Institute, Ljubljana. Introduction Experimental environment overview CKM Matrix Phase - f 1 ( b ) - f 2 ( a ) - direct CPV

clyde
Download Presentation

B . Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Overview of (selected) Belle and BaBar results B. Golob, Belle Collaboration University of Ljubljana Jožef Stefan Institute, Ljubljana • Introduction • Experimental environment overview • CKM Matrix • Phase - f1(b) • - f2(a) • - direct CPV • Magnitudes - |Vub| • Hadron spectroscopy • New charm states • much more… • Conclusions B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  2. VudVub* VcdVcb* VtdVtb* VcdVcb* qi W± Vij qj Al3(r-ih) r h Al3(1-r-ih) Introduction BaBar & Belle (Ba/lle) main task: CP violation in system of B mesons specifically: various measurements of complex elements of Cabbibo-Kobayashi-Maskawa matrix CKM matrix is unitary deviations could signal processes not included in SM (NP) Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb 1-l2/2 l f2(a) = Al2 1-l2/2 -l f3(g) f1(b) -Al2 1 (0,1) (0,0) B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  3. Mt. Tsukuba KEKB Belle Lpeak= =13.9x1033 s-1cm-2 253 fb-1 274 M BB Lpeak= =9.2x1033 s-1cm-2 221 fb-1 239 M BB ~1 km in diameter B e+ e- Dz ~ cbgtB ~ 200mm B Experimental environment Asymmetric B factories √s=10.58 GeV Υ(4s) Υ(4s) BaBar p(e-)=9 GeV p(e+)=3.1 GeV bg=0.56 Bellep(e-)=8 GeV p(e+)=3.5 GeV bg=0.42 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  4. Experimental environment-detectors Aerogel Cherenkov cnt. n=1.015~1.030 SC solenoid 1.5T CsI(Tl) 16X0 3.5 GeV e+ TOF conter Central Drift Chamber small cell +He/C2H5 8 GeV e- m / KL detection 14/15 lyr. RPC+Fe Si vtx. det. 3 lyr. DSSD BaBar:DIRC Cherenkov angle p Belle SVD: ~55mm (SVD1) ~40mm (SVD2) combined particle ID e(K±)~85% e(p±→K±)<~10% @ p<3.5 GeV/c z-imp.param. resolution B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  5. h f1 CKM Matrix – phases Measurement method r Btag B0 or B0 determined B0(B0) SM: for b → ccs : S=sin2f1, A=0 m+ Fully reconstruct decay to CP eigenstate m- J/y p- BCP Tag flavor of other B from charges of typical decay products p+ Ks l- Υ(4s) K- Dt=Dz/bgc Determine time between decays CPV manifests as an asymmetry in time dependent decay rates B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  6. CKM Matrix – sin2f1 274M BB T. Higuchi ICHEP’04 227M BB M.Bruinsma ICHEP’04 BABAR Nsig=2788 J/ψ KL signal J/ψ X background Non-J/ψ background to isolate B→fCP decays from bckg. B→J/y KL B→J/y Ks Nsig=4150 determine Dt distribution B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  7. CKM Matrix – sin2f1 Difference between B0 and B0 tagged decays Btag=B0 8 Dt [ps] -8 S=sin2f1= 0.666 ± 0.046 h f1 Belle T. Higuchi,ICHEP’04 S=sin2f1= 0.722 ± 0.040 ± 0.023 BaBar M.Bruinsma,ICHEP’04 r Expected Dt distribution convolved with detector resolution function Btag=B0 aCP Miss-tagging probability w reduces asymmetry by 1-2w (A=0.023 ± 0.031) (A=0 fixed) B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  8. h CKM Matrix – sin2f2 f2 d d d r b b b u u p+ W+ u W+ p0 p+ u u W+ u B0 B0 B0 p- d d p- d d p0 d d T ~ Vub*Vud ~ l3 Tc ~ Vub*Vud P ~ Vtb*Vtd ~ l3 t S=sin2f2 A=0 Constraint: SU(2) symmetry M+0 = 1/√2 M+- + M00 M-0 = 1/√2 M+- + M00 B0→ p+ p-, p0 p0 S = √(1-A2)sin2f2eff A ~ sindP function of f2 f1 dP |P/T| B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  9. CKM Matrix – sin2f2 152M BB PRL93,021801(2004) 227M BB Babar,M.Cristinziani,ICHEP’04 B0→ p+ p- -A+- good tag S+- B0→ p+ p- S+-= -1.00 ± 0.21 ± 0.07 A+-= 0.58 ± 0.21 ± 0.07 B0→ p+ p- S+-= -0.30 ± 0.17 ± 0.03 A+-= 0.09 ± 0.15 ± 0.04 Nsig=467 Nsig=232 aCP M.A.Giorgi, ICHEP’04 Dt [ps] B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  10. CKM Matrix – sin2f2 227M BB Babar,M.Cristinziani,ICHEP’04 274M BB Belle,Y.Sakai,ICHEP’04 BaBar Ba/lle Similar from B → r r S+-Br(B0→p0p0) A+-Br(B0→p+p-) ACPBr(B+→p+p0) Ba/lle Similar from B → r p B0→ p0 p0 Br(B0→p0p0)= (1.17 ± 0.32 ± 0.10)x10-6 ACP= 0.12 ± 0.56 ± 0.06 Nsig=61 Nsig=82 Br(B0→p0p0)= (2.32 ± 0.45 ± 0.20)x10-6 ACP= 0.43 ± 0.51 ± 0.17 Mbc[GeV] (f2eff closer tof2) Similar analysis as forB → p p also forB → r r f2= 106o± 8o11o M.A.Giorgi,ICHEP’04 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  11. CKM Matrix – direct CPV ≠0 direct CPV; |M(B→f)| ≠|M(B→f)| only when multiple proc. contribute to f (tree+penguin) B0→K-p+ B0→K+p- BaBar,227M BB,M.A.Giorgi,ICHEP’04 Belle,274M BB,Y.Sakai,ICHEP’04 Belle B→p+p- first evidence A+-= 0.58 ± 0.21 ± 0.07 not confirmed by BaBar Direct CPV also in time integrated decay rates: Nsig=1606 Mbc 5.20 5.24 5.28 ACP= -0.133±0.030±0.009 ACP= -0.101±0.025±0.005 Nsig=2139 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  12. CKM Matrix – consistency l W n r h B Xc,u Many independent measurements Unitary D b c,u |Vub/Vcb| From tree-level (s.l.) B decays |Vcb| known to ~1.4%, becoming as precise as |Vus|=l (~1%) need to pin-down |Vub|, present WA acc. ~10% b→cln backg. order of magnitude larger B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  13. h |Vub| CKM Matrix – |Vub| r g p K q2 D p B1 fully reconstructed (Mbc) B2 U(4s) l p l n El n p MX p Xu B Babar,88M BB high p lepton Mbc[GeV] Variables separating b → uln from b → cln: lepton energy El; hadronic inv. mass Mx; leptonic inv. mass q2; To reduce theoretical uncertainty in Br(b→uln) ↔ |Vub| use combination Mx -q2 Full reconstruction Belle: B→D(*)-p+/r+/a1+/Ds(*)+ e ~0.25% BaBar: B→D(*)- n1p n2K … e ~0.4% B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  14. CKM Matrix – |Vub| Belle,152M BB T.Iijima,ICHEP’04 Extract signal in high q2 low Mx region: Babar-CONF-04/11,ICHEP’04 Mx<1.7 GeV q2>8 GeV2 signal b→cln Nsig~115 Nsig=174 Babar |Vub|= (4.98± 0.40 ± 0.39 ± 0.47)x10-3 (stat.) (syst.) (th.) Belle |Vub|= (5.54± 0.42 ± 0.50 ± 0.55)x10-3 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  15. h f1 CKM Matrix – back to sin2f1 s r Not only from b → ccs (B→ J/y Ks) b W+ also from b → sss (B→ f Ks) f s B0 d KS s d P ~ Vtb*Vts ~ Al2 t 2.2s away from ccs BaBar,227M BB, A.Hoecker,ICHEP’04 Belle, 274M BB, Y.Sakai,ICHEP’04 other proc. negligible S=sin2f1 sin2f1= 0.06 ± 0.33 ± 0.09 aCP B→fKs Nsig=139 (0.73±0.04) sin2f1= 0.50 ± 0.25 ± 0.06 Dt Mbc B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  16. CKM Matrix – back to sin2f1 other examples of b → sss (e.g. B → h’ Ks) J/y Ks 0.73±0.04 f Ks 0.34±0.21 h’Ks 0.41±0.11 “sin2f1” conservative upper bound: |SyKs-Sh’KS|<0.2 Sh’KSorSfKS at present value would be sign of NP Grossman et al. B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  17. direct CPV in B system new charm states CPV in B system direct CPV in K system CPV in K system J/y (c quark) BaBar+Belle Aleph+Delphi Conclusions • Ba/lle mature exp., testing SM • with high precision • 1964: CPV in K system, 2001: CPV in • B system • 2004: sin2f1(b) is a precision measurement (±6%) • 1999: direct CPV in K system, 2004: direct CPV in B system; CKM predictions confirmed • f2(a) measured • many measurements stat. limited, in 2 years ~2x more data B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  18. h r r h Conclusions Before (B-factories)…: …and today… B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  19. Hadron spectroscopy – X(3872) hc’’ < 1 MeV/c2 cc1’ hc2Y2 Y3 X(3872) hc’ MD*+MD Y’ 2MD cc2 hc cc1 cc0 Decay to J/Yp+p- Isospin 0++ allowed J/Y Isospin 1-- violating hc Mass, width, Br’s & helicity un-compatible with expected cc states Belle observed a new state decaying into J/yp+p- B+→K+ X(3872) confirmed by CDF,D0,BaBar J/yp+p- y’ l+l- X(3872) M(J/yp+p-)- M(J/y) [GeV] Belle: G(X→gcc1)/G(X→ J/yp+p-)<0.89 G(X→gcc2)/G(X→ J/yp+p-)<1.1 X(3872) not observed in any other decay mode B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  20. Hadron spectroscopy – X(3872) Search for B+→K+ X(3872) Belle,274M BB F.Fang,ICHEP’04 J/yp+p-p0 N=10.0±3.6 S/N=5 in accordance with DD* molecule model w mass region M(w)+M(J/y)=3879 MeV X(3872)→w J/y could occurvia virtual w G(w J/y)/G(J/yp+p-)=0.8±0.3±0.1 Swanson,PLB 588,189(2004) B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  21. Hadron spectroscopy – DsJ mesons BaBar, 125fb-1,V.Halyo,ICHEP’04 Properties studied e.g. helicity in B→DDsJ DsJ(2317)+ → Ds+p0 J=1 J=1 DsJ(2460)+ → Ds+g J=0 J=2 M(DsJ) [GeV] Belle,280M BB, M.Danilov,ICHEP’04 BaBar and Cleo discovered two narrow resonances DsJ(2317)+→ Ds+p0DsJ(2460)+→ Ds+g, Ds*+p0 Apart from low masses properties in accordance with lowest level P states JP=0+,1+ B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  22. Hadron spectroscopy – DsJ mesons Belle,152M BB,A.Drutskoy,ICHEP’04 First observation of B0→DsJ(2317)+K- Events in Mbc,DE signal region Measured branching fractions Br(B0-> Ds K-)= (2.93±0.55±0.79)x10-5 Br(B0-> Dsp+)= (1.94±0.47±0.52)x10-5 B0→DsJ(2317)+K- B0→DsJ(2317)-p+ M(Dsp0)-M(Ds) [GeV] Br(B0→DsJ(2317)+K-)=(5.3±1.4±0.5±1.4)x10-5 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  23. direct CPV in B system new charm states CPV in B system direct CPV in K system CPV in K system J/y (c quark) BaBar+Belle Aleph+Delphi Conclusions • Ba/lle mature exp., testing SM • with high precision • 1964: CPV in K system, 2001: CPV in • B system • 2004: sin2f1(b) is a precision measurement (±6%) • 1999: direct CPV in K system, 2004: direct CPV in B system; CKM predictions confirmed • f2(a) measured • many measurements stat. limited, in 2 years ~2x more data B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  24. Continuum suppression backup slide qq e- e+ Other B continuum Y (4S) e+ e- - BB Signal B Continuum Jet-like e+e- →qq “continuum” (~3x BB) BB To suppress: use event shape variables spherical

  25. CKM Matrix – sin2f1 backup slide q1 q3 W V*qq1 b q b Vq3b q2 Vqb W q2 g V*q2q1 q2 q1 CP in decay: |A/A| ≠ 1 CP in mixing: |q/p| ≠ 1 CP in interference between mixing and decay: |l| = 1, Im(l) ≠ 1 |l| ≠ 1 Tree QCD penguin sin2f1(b) CP asymmetry: SM: |q/p|-1~ 4p(mc2/mt2)sinf1~5x10-4 in B system |l| ≠ 1 signals direct CPV

  26. CKM Matrix – sin2f1 backup slide b → ccs: A/A (q/p)B (q/p)K level of hadronic uncertainty due to interference (direct CP) tree + penguin contribution ~ VcbVcs*=Al2 penguin only contribution ~ VubVus*=Al4(r-ih)

  27. CKM Matrix – sin2f1 backup slide Fit result with |l|=1 fixed sin2β = 0.722  0.040 (stat)  0.023 (sys) when left free: |λ|=0.950 ± 0.031 (stat.) ± 0.013 S A Fitting function: Miss-tagging probability, resolution function: from self-tagged events B→D*ln, Dp, … BaBar, decay modes used: BaBar:

  28. CKM Matrix – sin2f1 signal region yield 227M BB M.Bruinsma ICHEP’04 274M BB T. Higuchi ICHEP’04 BABAR J/ψ KL signal J/ψ X background Non-J/ψ background to isolate B→fCP decays from bckg. B→J/y KL B→J/y Ks Nsig=4370 Nsig=2788 Nsig=4150 Nsig=2722 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul

  29. CKM Matrix – sin2f1 backup slide from b→sss S= 0.06 ± 0.33 ± 0.09 2.2s away from ccs 274M BB, ICHEP’04 penguin contribution ~ VcbVcs*=Al2 another penguin contribution ~ VubVus*=Al4(r-ih) S~sin2f1, theor. clean “sin2f1”= -0.96  0.51 152M BB, PRL91,261602(2003)

  30. CKM Matrix – sin2f1 backup slide 227M BB, ICHEP’04 2.7s away from ccs 2.4s away from ccs S= 0.50 ± 0.25 ± 0.06 fKs average: 0.34±0.21 h’Ks average: 0.41±0.11 conservative upper bound: |SyKs-Sh’KS| <0.2 Grossman et al. Sh’KSorSfKS at present valuewould be sign of NP

  31. CKM Matrix – f2 backup slide d d d b b b u u p+ u W+ u B0 p- d d u,c,t T ~ Vub*Vud ~ l3 S=sin2f2 A=0 W+ p0 p+ u u W+ B0 B0 d p- d p0 d d Tc ~ Vub*Vud P ~ Vtb*Vtd ~ l3 M+-= -Te-if2 + PeidP M+0= 1/√2(TceidC + T)e-if2 M00= 1/√2(TceidC e-if2 + PeidP) S = √(1-A2)sin2f2eff A ~ sindP Ispospin relations for B→pp f2 from B→pp BaBar

  32. CKM Matrix – f2 backup slide 122M BB, Moriond QCD’04 Slong=-0.19±0.33±0.11 Along= 0.23±0.24±0.14 89M BB, PRL91(2003),171802 Br(B+→r+r0)=(22.5±5.6±5.8)x10-6 227M BB,M.A.Giorgi,ICHEP’04 Br(B0→r0r0) < 1.1x10-6 @90% CL B→rr from BaBar r+r- could be mixed CP state, but observed to be almost pure CP=+1 f2 from B→rr BaBar B→(rp)0 from Ba/lle r+p- not CP eigenstate, 4 amplitudes considered:

  33. CKM Matrix – f2 backup slide G(B0→r+p-)+ G(B0→r-p+) G(B0→r-p+)+ G(B0→r+p-) Decay time distribution: indirect CPV parameter (f2) direct CPV parameter strong phase diff. between amplitudes asymmetry between direct CPV asymmteries Belle: selected bands BaBar: assume 3p dominated by r+,-,0 and fit Dalitz plot

  34. CKM Matrix – f2 backup slide M.A.Giorgi,ICHEP’04

  35. CKM Matrix – direct CPV backup slide 274M BB,Y.Sakai,ICHEP’04 B-→K-p0 B→K±p0 B+→K+p0 ACP= 0.04 ± 0.05 ± 0.02 c.f. inB→K+p- ACP= -0.101±0.025±0.005 2.4s diff. d p0 _ d ACP= 0.06 ± 0.06 ± 0.01 B- b K- BaBar,M.Chrintinziani,ICHEP’04 u u Large EW penguin?

  36. CKM Matrix – direct CPV backup slide s K- u W- W- b s b K- u B0 u p+ d u B0 d d p+ d P ~ Vtb*Vts ~ Al2 T ~ Vub*Vus ~ Al4 u,c,t Contributions to B0→K-p+

  37. CKM Matrix – f3 backup slide Basic idea: use B-→K-D0 andB-→K-D0with D0,D0→f interference ↔ f3 u b s D0 K- c u W- W- B- b c s u K- B- D0 u u d Tc ~ Vub*Vcs ~ Al3 (r+ih) ~ eif3 T ~ Vcb*Vus ~ Al3 Gronau,London,Wyler, 1991: B- → K-D0CP Atwood,Dunietz,Soni, 2001: B- → K-D0(*)[K+p-] Belle;Giri,Zupan et al., 2003: B- → K-D0(*)[Ksp+p-] Dalitz plot Sensitivity depends on or any other common 3-body decay; Dalitz density depends on f3

  38. CKM Matrix – f3 backup slide Belle,152M BB A.Bozek,ICHEP’04 B+ D0K+ B- D0K- M2(Ksp-) M2(Ksp-) M2(Ksp+) M2(Ksp+) Belle: Use continuum D0 from D*– D0π–, D0 Ksπ+π–decay to model Dalitz plot density. B± D0 K± D0 Ksπ+π– B± D0 p± miss-id DE Mbc Visible asymmetry Fit with f3,d,rB free 26o <f3 <126o@ 95% C.L. rB = 0.26 ±0.110.15± 0.03 ± 0.04

  39. CKM Matrix – f3 backup slide 20% 74% 97% rB BaBar,211M BB G.Cavoto,ICHEP’04 Belle,152M BB A.Bozek,ICHEP’04 f3 rB 90% 68% f3

  40. CKM Matrix – |Vub| backup slide q2 Mx2 used in measurement (q2cut,MXcut) 8 GeV2, 1.7 GeV DVub 6%-9% only q2cut 11.6 GeV2 DVub 12%-15% C.W.Bauer et al.,hep-ph/0111387 large non-perturbative corr. (large th. uncertainty) MX only Babar-CONF-04/11,ICHEP’04 |Vub|= (4.77± 0.28 ± 0.28 ± 0.690.39)x10-3 Mx-q2 |Vub|= (4.92± 0.39 ± 0.36 ± 0.46)x10-3

  41. CKM Matrix – |Vub| backup slide Mx-q2 |Vub|= (4.92± 0.39 ± 0.36 ± 0.46)x10-3 BaBar (stat.) (syst.) (th.) Belle |Vub|= (5.54± 0.42 ± 0.50 ± 0.55)x10-3 BaBar syst.: largest from detector (tracking, ID) and b→cln modeling Belle syst.: MC statistics

  42. 35±7 events M=3872.0±0.8 MeV G<2.3MeV (90%) X(3872) backup slide BaBar M(J/Yp+p-)

  43. X(3872) hc” hc’ cc1’ y2 hc2 y3 M too low and G too small angular dist’n rules out 1+- G(gJ/y) way too small G(gcc1) too small; (PRL 93, 2003) pp hc should dominate ppJ/y G( gcc2 & DD) too small - Isospin violating decays to J/Yp+p- ccuu=1/√2 cc [1/√2 (uu+dd)+1/√2 (uu-dd)]=1/√2(|I=0>+|I=1>) backup slide C(J/y)=-1,C(w)=-1 → C(X)=+1 Since p is not C eigenstate, decayX→J/y pp is probably X→J/y r (as indicated by m(pp)) I(r)=1, I(w)=0, I(J/y)=0 → X decays break isospin symmetry

  44. DsJ backup slide Belle, 87fb-1,PRL92,012002(2004) M(Ds*p0)-M(Ds*) M(Dsp0)-M(Ds) helicity angle: Feynman diagrams for B0→DsJ+K-

More Related