1 / 8

Ch. 14 – Probabilistic Reasoning

Ch. 14 – Probabilistic Reasoning. Supplemental slides for CSE 327 Prof. Jeff Heflin. Conditional Independence. if effects E 1 ,E 2 ,…,E n are conditionally independent given cause C. can be used to factor joint distributions P ( Weather,Cavity,Toothache,Catch ) =

cody
Download Presentation

Ch. 14 – Probabilistic Reasoning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ch. 14 – Probabilistic Reasoning Supplemental slides for CSE 327 Prof. Jeff Heflin

  2. Conditional Independence • if effects E1,E2,…,En are conditionally independent given cause C • can be used to factor joint distributions • P(Weather,Cavity,Toothache,Catch) = • P(Weather)P(Cavity,Toothache,Catch) = • P(Weather)P(Cavity)P(Toothache|Cavity)P(Catch|Cavity)

  3. P(B) P(E) 0.001 0.002 B E P(A|B,E) T T 0.95 T F 0.94 F T 0.29 F F 0.001 A P(M|A) A P(J|A) T 0.70 T 0.90 F 0.01 F 0.05 Bayes Net Example Burglary Earthquake Alarm MaryCalls JohnCalls From Fig. 14.2, p. 512

  4. Global Semantics • atomic event using a Bayesian Network P(b,e,a, j,m) = P(b)P(e)P(a|b,e)P(j|a)P(m|a) • atomic event using the chain rule P(b,e,a, j,m) = P(b)P(e|b)P(a|b,e)P(j| b,e,a)P(m| b,e,a,j)

  5. Bayes Net Inference Formula: Example: P(b|j,m)=αP(b)[P(e)[P(a|b,e)P(j|a)P(m|a) +P(a|b,e)P(j|a)P(m|a)] +P(e)[P(a|b,e)P(j|a)P(m|a) + P(a|b,e)P(j|a)P(m|a)]

  6. Tree of Inference Calculations P(b)=.001 + P(e)=.998 P(e)=.002 + + P(a|b,e)=.95 P(a|b,e)=.05 P(a|b,e)=.94 P(a|b,e)=.06 P(j|a)=.05 P(j|a)=.90 P(j|a)=.90 P(j|a)=.05 P(m|a)=.99 P(m|a)=.30 P(m|a)=.30 P(m|a)=.99

  7. Calculating P(b|j,m)and P(b|j,m) P(b|j,m)=αP(b)[P(e)[P(a|b,e)P(j|a)P(m|a) + P(a|b,e)P(j|a)P(m|a)] +P(e)[P(a|b,e)P(j|a)P(m|a) + P(a|b,e)P(j|a)P(m|a)]] = α(0.001)[(0.002)[(0.95)(0.9)(0.3) + (0.05)(0.05)(0.99)] + (0.998)[(0.94)(0.9)(0.3) + (0.06)(0.05)(0.99)]] = α(0.001)[(0.002)[0.2565 + 0.002475] + (0.998)[0.2538 + 0.00297]] = α(0.001)[(0.002)(0.258975) + (0.998)(0.25677)] = α(0.001)[0.00051795 + 0.25625646] = α(0.001)(0.25677441) = α(0.00025677441) P(b|j,m)=αP(b)[P(e)[P(a| b,e)P(j|a)P(m|a) + P(a| b,e)P(j|a)P(m|a)] +P(e)[P(a| b,e)P(j|a)P(m|a) + P(a| b,e)P(j|a)P(m|a)]] = α(0.999)[(0.002)[(0.29)(0.9)(0.3) + (0.71)(0.05)(0.99)] + (0.998)[(0.001)(0.9)(0.3) + (0.999)(0.05)(0.99)]] = α(0.999)[(0.002)[0.0783 + 0.035145] + (0.998)[0.00027 + 0.0494505]] = α(0.999)[(0.002)(0.113445) + (0.998)(0.497205)] = α(0.999)[0.00022689 + 0.049621059] = α(0.999)(0.049847949) = α(0.049798101051)

  8. Normalizing the Answer P(b|j,m) =α(0.00025677441) P(b|j,m) = α(0.04979801051) α = 1 / (0.00025677441 + 0.04979801051) α = 1 / 0.050054875461 α19.97807 P(b|j,m) (19.97807)(0.00025677441)  0.0051 P(b|j,m) (19.97807) (0.04979801051)  0.9949 P(B|j,m) = <0.0051, 0.9949>

More Related