1 / 23

What is Green Button?

Michael Li, Senior Policy Advisor Office of Energy Efficiency and Renewable Energy U.S. Department of Energy. What is Green Button?. Common-sense idea that electricity customers should be able to download their own energy usage information in a consumer- and computer-friendly format. Source:.

coen
Download Presentation

What is Green Button?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Michael Li, Senior Policy AdvisorOffice of Energy Efficiency and Renewable EnergyU.S. Department of Energy

  2. What is Green Button? Common-sense idea that electricity customers should be able to download their own energy usage information in a consumer- and computer-friendly format. Source:

  3. Who is implementing green button? Utilities and electricity suppliers in 24 states across various regulatory regimes have committed to provide 30 million US homes and businesses Green Button data. Commitment to Green Button: American Electric Power Austin Energy Baltimore Gas & Electric CenterPoint Energy Chattanooga EPB Commonwealth Edison Glendale Water and Power National Grid Oncor PECO Pepco Holdings PPL Electric Utilities Pacific Power Rocky Mountain Power Southern California Edison Virginia Dominion Power Utilities & Electricity Suppliers with Green Button today: (almost 10 million homes) NSTAR PG&E Reliant SDG&E TXU Energy • NSTAR • PG&E • Reliant • SDG&E • TXU Energy

  4. Green Button Facts • What it is: • Energy usage information in a common XML format (NAESB ESPI data std) • PG&E example: how much electricity (kWh) did one metered customer consume every hour for the last year • Markets: Residential, commercial and industrial • Type: initially electricity, but the data standard is extensible to gas and water data • Timeliness: Not real time data, but 24 hour-old back office data. • Time interval: • Again the data standard is extensible and could include any interval of data. • Most will provide 15 minute interval or hourly data. • However, some will provide monthly data, too. • Metering system: • You don’t need to have AMI to participate. AMR works, too. • Transfer of data: • Green Button, Download My Data – goes directly from the utility to the customer; most will implement this version. • Green Button Connect - automated data transfer from the utility to a third party with customer authorization is the 2nd part of the data std; may be implemented as early as this year in 1-2 states.

  5. Helping to spur new innovation and Green Button Apps http://openei.org Green Button Apps! http://appsforenergy.challenge.gov/

  6. Apps for Energy Winners Best Overall App Grand Prize: Leafully Location: Seattle, Washington Leafully, helps utility customers visualize their Green Button data, as a variety of units, such as the amount of trees needed to offset an individual’s energy usage.  Best Overall App Second Prize: Melon Location: Washington, DC The app uses Green Button to evaluate the energy performance of commercial buildings.  Best Overall App Third Prize: VELObill Location: New York, NY VELObill app helps makes it easier for utility customers to view their energy usage, measure whether it is high or low, and compare it to that of their peers.  Best Student App Grand Prize: wotz Location: Irvine, CA Best Student App Second Prize: Budget It Yourself Location: Cleveland, OH http://energy.gov/articles/first-winners-announced-apps-energy-competition-0

  7. SEE Action Working Groups Working Group Leadership Susan Ackerman, OR PUC Vaughn Clark, OK SEO Todd Currier, WA SEO Jennifer Easler, IA Consumer Advocate Joshua Epel, CO PUC Jim Gallagher, NY ISO Bryan Garcia, CT Clean Energy Fund Frank Murray, NY SEO Pat Oshie, WA PUC Phyllis Reha, MN PUC Cheryl Roberto, OH PUC Janet Streff, MN SEO Keith Welks, PA Treasury Malcolm Woolf, MD SEO

  8. Evaluation, Measurement, and Verification (EM&V) of Residential Behavior-Based Energy Efficiency Programs: Issues and Recommendations June 25, 2012 Michael Li US Department of Energy Annika Todd Lawrence Berkeley National Lab

  9. Outline: Evaluation of Behavior-Based Programs • What is a behavior-based energy program? • Why is evaluation of these programs hard? • Why is designing a program as a “randomized controlled trial” (RCT) so important?

  10. What is a behavior-based energy program? • Programs that affect the way that consumers use energy without using traditional methods, such as prices and rebates • Instead, use simple psychological levers or information to change behavior • Example 1: Comparing your energy use with your neighbors • Example 2: Providing real-time information about energy use • Other examples: • Competitions, rewards: Turning energy use into a game • Education / Outreach: Information about energy behavior • Display of feedback: Simplify / Framing

  11. What are the potential benefits and concerns? • Potential Benefits • In theory, potentially cheap to implement and result in significant energy savings  cost effective • As a result, increasingly being adopted nationwide • Potential Concerns • In reality, these programs are relatively new and evidence of energy saving effects is unclear • Potential for unsubstantiated claims

  12. Why is evaluation crucially important?  It is very important to measure effect of these programs • Need to gain information about how well different types of programs work • Are the estimates energy savings valid for utilities to claim savings?

  13. Why is evaluation of these programs hard? • Strong problems of “selection bias”: households who join (choice, screening) are fundamentally different • Observed differences might be due to program; might difference between groups • Selection bias can skew the results of the evaluation Join Didn’t Join Population

  14. Why is evaluation of these programs hard? • Energy programs “selection bias”: households who opt-in may be more energy conscious • Observed difference in energy use might be due to the program; but might be difference between groups Opt-in Don’t opt-in

  15. Why is evaluation of these programs hard? • It may be more difficult to measure the impact of behavior-based programs correctly (in contrast to other programs such as appliance rebates) • Impacts vary significantly between households • Within a household, hard to disentangle changes in overall energy usage between program, other factors • Savings are relatively small: often 1-5%, so if an evaluation is biased, large implications

  16. Why is evaluation of these programs hard?  Bad evaluation could lead to bad policy decisions

  17. SEE Action Report • “Evaluation, Measurement, and Verification (EM&V) of Residential Behavior-Based Energy Efficiency Programs” • Provides guidelines and best practices for • Program design • Program analysis and evaluation given design • Provides rankings for different methods • Target audiences: • Senior managers responsible for overseeing and reviewing efficiency program designs and evaluations • Practitioners, evaluation professionals, and staff responsible for reviewing efficiency program designs and evaluations

  18. Why is designing a program as a randomized controlled trial (RCT) so important? • Primary recommendation – a well designed, RCT program results in: • Transparent, straightforward analysis • Robust, accurate, valid program impact estimates • High degree of confidence in program effectiveness • Why? • RCT means that households are assigned to the program randomly (as opposed to household choice or screening criteria) • Solves selection bias

  19. Why is designing a program as a randomized controlled trial (RCT) so important? • If RCTs are not feasible, recommendations for acceptable “quasi-experimental” methods • More opaque, difficult, complex analysis • Quasi-experimental methods try to correct for selection bias • Lower degree of confidence in validity of savings estimates

  20. Other Key Recommendations • Problem: Potential conflicts of interest • Recommendation: Third-party evaluator transparently defines and implements program evaluation, assignment to control and treatment groups, data selection • Problem: The same savings may be claimed by two programs (e.g., a behavioral program & appliance rebate program both claim savings from appliances) • Recommendation: Estimate and account for this “double counted savings” overlap to the extent possible by comparing control to treatment groups

  21. Recommendations for the Future • The hope is that in the future, we will have conclusive evidence about the effectiveness of different types of behavior-based programs • Move away from RCTs • We are not yet at this point…

  22. Questions? • Main point: evaluation of behavior-based programs is difficult, but if the program is designed in the right way (using a RCT) then we can be confident that the evaluation of the program’s energy savings is valid • Many guidelines and technical recommendations in the report: • SEE Action website, www.seeaction.energy.gov • Lawrence Berkeley National Lab website: behavioranalytics.lbl.gov Mike Li: Michael.Li@hq.doe.gov Annika Todd: atodd@lbl.gov

More Related