410 likes | 548 Views
Lecture No. 4. Number Systems. 32-bit f.p. number (recap). 32-bit Floating point format Sign bit 1 Exponent bits 8 Mantissa bits 23 Exponent represented as Biased 127. Range of f.p. numbers (recap). Largest positive/negative number 2 127 Smallest positive/negative number 2 -126
E N D
Lecture No. 4 Number Systems
32-bit f.p. number (recap) • 32-bit Floating point format • Sign bit 1 • Exponent bits 8 • Mantissa bits 23 • Exponent represented as Biased 127
Range of f.p. numbers (recap) • Largest positive/negative number • 2127 • Smallest positive/negative number • 2-126 • The number Zero • Exponent = 00000000 Mantissa = 000 0000 0000 0000 0000 0000 • The number infinite • Exponent = 11111111 Mantissa = 000 0000 0000 0000 0000 0000
Arithmetic operations on floating point numbers • Addition • Adding mantissas after adjusting exponents • Subtraction • Subtracting mantissas after adjusting exponents • Multiplication • Multiplying mantissas and adding exponents • Division • Dividing mantissas and subtracting exponents
64-bit f.p. number (recap) • 64-bit Double-Precision floating Point format • Sign bit 1 • Exponent bits 11 • Mantissa bits 52 • Exponent represented as Biased 1023
f.p. numbers (recap) • How do systems differentiate between number representations? • Defining and Declaring Data Types.
Hexadecimal Numbers (recap) • Hexadecimal Number System • Base 16 number system • 0 to F • Used to represent large binary numbers
Binary-Hexadecimal conversion (recap) • Binary to Hexadecimal Conversion • 11010110101110010110 • 1101 0110 1011 1001 0110 • D 6 B 9 6 • Hexadecimal to Binary Conversion • FD13 • 1111 1101 0001 0011
Hexadecimal-decimal conversion (recap) • Hexadecimal to Decimal Conversion • Indirect Method • Hexadecimal →Binary → Decimal • Sum-of-Weights
Decimal-Hexadecimal Conversion (recap) • Decimal to Hexadecimal Conversion • Indirect Method • Decimal →Binary → Hexadecimal • Repeated Division by 16
Hexadecimal Arithmetic (recap) • Hexadecimal Addition • Carry generated • Hexadecimal Subtraction • Borrow weight 16
Octal Number System • Base 8 • 0, 1, 2, 3, 4, 5, 6, 7 • Representing Binary in compact form • 11011000001102 = 154068 • Not commonly used in the presence of Hexadecimal Number System
Counting in Octal • Octal digit represented by a 3-bit binary • Decimal 8 represented by 2-digit Octal
Binary-Octal Conversion • Binary to Octal Conversion • Octal to Binary Conversion
Octal-Decimal Conversion • Octal to Decimal Conversion • Indirect Method • Octal →Binary → Decimal • Sum-of-Weights
Decimal-Octal Conversion • Decimal to Octal Conversion • Indirect Method • Decimal →Binary → Octal • Repeated Division by 8
Octal Addition & Subtraction • Octal Addition • Carry generated • Octal Subtraction • Borrow weight 8
Binary to Octal Conversion • 011010110101110010110 • 011 010 110 101 110 010 110 • 3 2 6 5 6 2 6 • 1011011101001 • 1 011 011 101 001 • 001 011 011 101 001 • 1 3 3 5 1
Octal to Binary Conversion • 1726 • 001 111 010 110
Sum-of-Weights 4037 (4 x 83) + (0 x 82) + (3 x 81) + (7 x 80) (4 x 512) + (0 x 64) + (3 x 8) + (7 x 1) 2048 + 0 + 24 + 7 2079
Octal Addition Carry 1 7602 + 4771 14573
Octal Subtraction Borrow 11 7602 - 4771 2611
Alternate Representations • Excess Code • BCD Code • Gray Code
Excess Code • A bias is added to Binary Code • Used by floating point numbers
BCD (Binary Coded Decimal) Code • Binary Code to represent decimal digits 0-9 • Used by Decimal Number Displays
BCD Addition 23 0010 0011 45 0100 0101 68 0110 1000 23 0010 0011 49 0100 1001 72 0110 1100 • 1100 is illegal BCD number
BCD Addition • Add a 0110 (6) to an invalid BCD number • Carry added to the most significant BCD digit 23 0010 0011 49 0100 1001 72 0110 1100 0110 0111 0010
Gray Code • Binary Code more than 1 bit change • Electromechanical applications of digital systems restrict bit change to 1 • Shaft encoders • Braking Systems • Un-Weighted Code
Alphanumeric Code • Numbers, Characters, Symbols • ASCII 7-bit Code • American Standard Code for Information Interchange • 10 Numbers (0-9) • 26 Lower Case Characters (a-z) • 26 Upper Case Characters (A-Z) • 32 Control Characters • Punctuation and Symbols
Alphanumeric Code • Extended ASCII 8-bit Code • Additional 128 Graphic characters • Unicode 16-bit Code
ASCII Code • Numbers 0 to 9 • ASCII 0110000 (30h) to 0111001 (39h) • Alphabets a to z • ASCII 1100001 (61h) to 1111010 (7Ah) • Alphabets A to Z • ASCII 1000001 (41h) to 1011010 (5Ah) • Control Characters • ASCII 0000000 (0h) to 0011111 (1Fh)
Error Detection • Digital Systems are very Reliable • Errors during storage or transmission • Parity Bit • Even Parity • Odd Parity
Odd Parity Error Detection • Original data 10011010 • With Odd Parity 110011010 • 1-bit error 110111010 • Number of 1s even indicates 1-bit error • 2-bit error 110110010 • Number of 1s odd no error indicated • 3-bit error 100110010 • Number of 1s even indicates error