1 / 8

Chapter 5 : Functions of Random Variables

Chapter 5 : Functions of Random Variables. สมมติว่าเรารู้ joint pdf ของ X 1 , X 2 , …, X n --> ให้หา pdf ของ Y = u (X 1 , X 2 , …, X n ) 3 วิธี 1. Distribution Fn Technique 2. Transformation Technique 3. MGF Technique. 5.1 Distribution Function Technique.

Download Presentation

Chapter 5 : Functions of Random Variables

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5: Functions of Random Variables

  2. สมมติว่าเรารู้ joint pdf ของ X1, X2, …, Xn --> ให้หา pdf ของ Y = u (X1, X2, …, Xn) • 3 วิธี 1. Distribution Fn Technique 2. Transformation Technique 3. MGF Technique

  3. 5.1 Distribution Function Technique • ใช้ได้เฉพาะกรณี Continuous r.v. • พิจารณา Y = u (X1, X2, …, Xn) 1. หาค่า cdf of Y 2. จะได้ว่า

  4. 5.2 Transformation Technique: One Variable กรณี Discrete random variable กรณี Discrete random variable กรณี Continuous random variable กรณี Discrete random variable กรณี Continuous random variable • Assume that the function y = u(x) is “differentiable” and “monotonic” (either increasing or decreasing) for all X in which f(x) 0 --> Inverse fn x = w(y) exists and is differentiable for all corresponding values of y

  5. Th’m1:ให้ f(x) เป็น pdf ของ continuous r.v. X, pdf ของ r.v. Y = u(X) จะเป็น:

  6. 5.3 Transformation Technique : Two Variables • Th’m 2Let be the value of joint pdf of cont rv X1 and X2 at . If fn given by and are partially differentiable with X1 and X2and represent a one-to-one transformation for all values within the range of X1 and X2 for which , then, for these values of x1and x2 , the equations and can be uniquely solved for x1 and x2 to give and and for the corresponding values of and the joint pdf of and is given by:

  7. Th’m 2 (cont) J is called Jacobian of the transformation and is the determinant Elsewhere ,

  8. 5.4 Moment-Generating Function Technique • Th’m 3ถ้า เป็นindependent rvและ ดังนั้น คือ ค่าของ moment-generating function ของ Xiat t • ถ้า MY(t) = MZ(t) จะได้ว่า Y กับ Z มี pdf เหมือนกัน

More Related