1 / 5

P1-26 Law of CoSines

P1-26 Law of CoSines. Given Irregular Quadrilateral By Law of CoSines. P1-26 Law of CoSines. Given Quantities  Find c 2 when Instructor to WhtBd to Build Quadratic Eqn in c 2. P1-26 Law of CoSines. Build Quadratic Eqn in c 2

colton
Download Presentation

P1-26 Law of CoSines

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. P1-26 Law of CoSines • Given Irregular Quadrilateral • By Law of CoSines

  2. P1-26 Law of CoSines • Given Quantities  • Find c2 when • Instructor to WhtBd to Build Quadratic Eqn in c2

  3. P1-26 Law of CoSines • Build Quadratic Eqn in c2 • Instructor to Write m-file from Scratch (start w/ blank m-file)

  4. P1-26 mFile & Results % Bruce Mayer, PE % EGNR25 * 23Jun11 % file = P1_26_LawOfCos_1106.m % % % Set Known ParaMeters b1 = 180; b2 = 165; c1 = 115; % all in meters A1 = 120; A2 = 100; % all in Degrees % % Calc the constant a^2 asq = b1^2 + c1^2 -2*b1*c1*cosd(A1) % note use of cosd % % Make Quadratic PolyNomial c2Poly = [1, -2*b2*cosd(A2), (b2^2 - asq)] % % Find roots of PolyNomial c2roots = roots(c2Poly) % % NOTE: since c2 is a DISTANCE it MUST be POSITIVE asq= 66325 c2Poly = 1.0e+004 * 0.0001 0.0057 -3.9100 c2roots = -228.4542 171.1503 ANSWER

  5. Another Solution % Bruce Mayer, PE % 20Aug12 * ENGR25 % file P1_26_LawOfCos_Alternative_1208.m % % Side Lengths in meters b1 = 180, b2 = 165, c1 = 115 % commas do NOT suppress ReadBack % % Angles in Degrees A1 = 120; A2 = 100; % semicolons DO suppress ReadBack % % calc parameter "asqd" asqd = b1^2 + c1^2 - 2*b1*c1*cosd(A1) % note use of cosd; not cos. cos operates on radians % c2QuadCoeff = [1 -2*b2*cosd(A2) b2^2-asqd] % find Roots of Quadratic c2 = roots(c2QuadCoeff) % Note that c2 is a DISTANCE and hence MUST be POSITIVE

More Related