310 likes | 413 Views
How is SUSY broken? How viable is SUSY dark matter ? Is there enough SUSY CP violation to account for the matter-antimatter asymmetry?. IV. Low Energy Probes of SUSY. J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech)
E N D
How is SUSY broken? • How viable is SUSY dark matter ? • Is there enough SUSY CP violation to account for the matter-antimatter asymmetry? IV.Low Energy Probes of SUSY • J Erler (UNAM) • A Kurylov (Caltech) • C Lee (Caltech) • S Su (Arizona) • P Vogel (Caltech) • G Prezeau (Caltech) • V Cirigliano (Caltech)
High precision, low energy measurements can probe new physics in the “desert” Complementary to Z0 pole • LEP & SLD programs are complete • Sensitivity to off Z0 - resonance physics • Precision is improving Precision ~ Mass Scale M=m~ 2 x 10-9 exp ~ 1 x 10-9 M=MW ~ 10-3
= 1 SM Expt Weak decays
b-decay New physics SUSY Weak decays
b-decay SM theory input Weak decays
b-decay 0+! 0+ “Superallowed” Nuclear structure-dependent corrections Weak decays
New tests b-decay 0+! 0+ “Superallowed” Nuclear structure-dependent corrections Weak decays
LANSCE: “UCN A” b-decay 58Ni coated stainless guide Flapper valve Liquid N2 Be reflector LHe Solid D2 Ultra cold neutrons Future SNS: Pulsed Cold Neutrons: “abBA” 77 K poly UCN Detector Tungsten Target Weak decays
b-decay Decay correlations Future SNS: Pulsed Cold Neutrons: “abBA” Weak decays G. Greene
b-decay LANSCE SNS NIST Weak decays
b-decay gv/gA Vud tn ~ gv2+3gA2 ILL, Grenoble Weak decays
b-decay PSI: “Pi-Beta” Weak decays
kaon decay Value of Vusimportant SUSY Loops: Too small Weak decays
kaon decay SM Theory Weak decays
Vus kaon decay Weak decays V. Cirigliano
Drm Vertex & External leg SUSY Radiative Corrections Propagator Box
mt , MH Other Inputs 1. Muon (g-2): Size of error bar crucial 2. W Mass: 3. Superpartner Masses: Start analysis with collider lower bounds and vary later
Muon g-2 SM Theory J. Miller
SUSY Muon g-2
SUSY Muon g-2
MZ=91.1875 +/- 0.0021 Most precisely measured MW=80.425 +/- 0.034 Dominant uncertainties Mt=178.0 +/- 2.7 +/- 3.3 W Boson & Top Quark Masses
SUSY Breaking ~ 5 parameters Visible World Hidden World 105 parameters Flavor-blind mediation SUSY theory must explain why no SUSY particles yet seen
Flavor-blind SUSY-breaking clasheswith Experiment SUSY Breaking Visible World Hidden World Exp’t Flavor-blind mediation Kurylov & R-M SUSY Theory
LANSCE, NIST, SNS… SUSY irrelevant to low energy observables New ideas needed ! Better control of non-pQCD Exp’t: n decay, Ke3 decay ??? Break R-parity But NuTeV CC (non) universality & the MSSM Data appear to conflict with MSSM & models having flavor-blind SUSY-breaking mediation Possible resolutions: MSUSY > TeV 2. Hadronic effects in SM predictions 3. Something is wrong with exp’t 4. New models of SUSY-breaking 5. Go beyond the MSSM
Unitarity Vus KLOE Prelim Kaon Decays & Vus Cirigliano & De Lucia
Unitarity Vus KLOE Prelim Kaon Decays & Vus
SUSY irrelevant to low energy observables Better control of non-pQCD Exp’t: n decay, Ke3 decay ??? Break R-parity But NuTeV CC (non) universality & the MSSM Data appear to conflict with MSSM & models having flavor-blind SUSY-breaking mediation Possible resolutions: MSUSY > TeV 2. Hadronic effects in SM predictions 3. Something is wrong with exp’t 4. New models of SUSY-breaking 5. Go beyond the MSSM
SUSY Breaking “R parity violation” (RPV) Visible World Hidden World 12k 12k Flavor-blind mediation Weak decays MW Test in scattering experiments APV l2 SUSY Theory OK if no SUSY dark matter
Li, Qi SU(2)L doublets Ei, Ui, Di SU(2)L singlets R-Parity Violation (RPV) L=1 WRPV = ijk LiLjEk + ijk LiQjDk +/i LiHu + ijkUiDjDk B=1 proton decay: Set ijk =0
12k 1j1 12k 1j1 Four-fermion Operators L=1 L=1