1 / 18

Basic Circuit Analysis

Basic Circuit Analysis. Magnetic Circuits Transformers. The Linear Transformer. Illustrating Induced Voltage:. Case 1:. j M. +. +. V 1. I 1. V 2. I 2. •. •. _. _. j L 1. j L 2. V 1 = j L 1 I 1 + jMI 2. V 2 = j L 2 I 2 + jMI 1. The Linear Transformer.

cormac
Download Presentation

Basic Circuit Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Basic Circuit Analysis Magnetic Circuits Transformers

  2. The Linear Transformer Illustrating Induced Voltage: Case 1: jM + + V1 I1 V2 I2 • • _ _ jL1 jL2 V1 = jL1I1 + jMI2 V2 = jL2I2 + jMI1

  3. The Linear Transformer Illustrating Induced Voltage: Case 2: jM _ + • I1 V1 V2 I2 • _ + jL2 jL1 V1 = jL1I1 + jMI2 V2 = jL2I2 + jMI1

  4. The Linear Transformer Illustrating Induced Voltage: Example 1: j8 -j4 6 2 • + + I1 I2 va(t) vb(t) j6 j10 _ _ • va(t) = 50cos(400t + 30) V vb = 80cos(400t – 40) V Va = 50300 V Vb = 80-400 V

  5. EXAMPLE 1: Continued j8 -j4 6  2  • + + I1 I2 j10  j6  80-40 V 5030V _ _ • Solve for I1 and I2 Mesh 1 (2 + j10)I1 + j8I2 = 5030 j8I1 + (j6 – j4 + 6)I2 = - 80-40 Mesh 2 (2+j10) j8 I1 5030 = Matrix Form j8 (6+j4) I2 -80-40

  6. The Linear Transformer Illustrating Induced Voltage: Example 2: 8  -j4  j8  j10  • • j3  + j5  12  200 V I1 _ I2 6  Solve for I1 and I2

  7. Example 2: Continued 8  -j4  j8  j10  • • j3  + j5  12  200 V I1 _ I2 6  (8 + j10 + j5 + 6)I1 - (j5 + 6 + j3)I2 = 200 Mesh 1: Mesh 2 -(6 + j5 + j3)I1 + (6 + j5 + j8 – j4 + 12 + j3)I2 = 0 (14+j15) -(6+j8) I1 200 Matrix = -(6+j8) (18+j12) I2 0

  8. THE IDEAL TRANSFORMER N1 : N2 1 : n ideal If like assumed polarities of the voltages V1 and V2 are placed at the 2dots of the transformer, then V1/V2 = n. If either one of the dots or either one of the voltage polarities are reversed then V2/V1 = -n. If current I1 enters the dot on its side of the transformer and current I2 leaves the dot on its side of the transformer then I1/I2 = n. If either current reverses its direction of entering its respective dot then I1/I2 = - n

  9. THE IDEAL TRANSFORMER 1:n ideal BASIC EQUATIONS: V2 I1 n = = n I2 V1 I2ZL - V2 = -VS2 I1Zin + V1 = VS1 ,

  10. THE IDEAL TRANSFORMER ideal Rearrange previous equations Zin 0 1 0 I1 Vs1 0 ZL 0 -1 I2 -Vs2 = Matrix 0 0 -n 1 V1 0 1 -n 0 0 V2 0

  11. THE IDEAL TRANSFORMER 1 : n ZA ZB VA VB The Basic Transformer Without Markings

  12. THE IDEAL TRANSFORMER • Thevenin Considerations: • • • • or • • this this • • • or • • • this this

  13. THE IDEAL TRANSFORMER 1 : n ZA ZB VA VB ZA ZB n2 _ + + • • • VB VB VA _ • n - n +

  14. THE IDEAL TRANSFORMER 1 : n ZA ZB VA VB ZB n2ZA _ + • • + • nVA nVA VB _ • + _

  15. THE IDEAL TRANSFORMER (4 – j6)  (9 + j18)  1 : 3 ZA ZB _ + • + + 100 V I1 2730 V V1 V2 I2 _ _ + _ • Solve for I1 and I2 Thevenin impedance Thevenin voltage • j2  -j6  1  4  + + + 930 V 100 V I1 V1 _ _ _ •

  16. The Ideal Transformer Thevenin impedance Thevenin voltage • j2  -j6  1  4  + + + 930 V 100 V I1 V1 _ _ _ (5 – j4)I1 = 100 - 930 I1 = 0.78-25 A I1 I2 = - 0.26155 A = 3 10.7131.3 V V1 - 100 + (4 – j6)I1 = 0; V1 = 10 – (4 – j6)(0,78-25 V2 = -3V1 = - 3(10.7131.3) 32.1-148.7 V

  17. The Ideal Transformer (4 – j6)  (9 + j18)  1 : 3 ZA ZB _ + • + + 100 V I1 2730 V V1 V2 I2 _ _ + _ • Non Thevenin Solution: (4 – j6)I1 + V1 = 100 ; (9 + j18)I2 – V2 = 2730 V2 I1 I1 + 3I2 = 0 = - 3 3V1 + V2 = 0 = - 3 V1 I2 (4 – j6) 0 1 0 I1 100 0 (9 + j18) 0 -1 I2 2730 = Matix 0 0 3 1 V1 0 1 3 0 0 V2 0

  18. Basic Laws of Circuits circuits End of Lesson Magnetic Circuits

More Related