330 likes | 485 Views
Z2. Building a Model-Checker for Z. John Derrick, Siobhán North and Anthony Simons Department of Computer Science University of Sheffield. Z2. Overview. Tool support for Z refinement Z2SAL translation strategy Basic types, free types, schemas The mathematical toolkit
E N D
Z2 Building a Model-Checker for Z John Derrick, Siobhán North and Anthony Simons Department of Computer ScienceUniversity of Sheffield ABZ Conference, London 2008
Z2 Overview • Tool support for Z refinement • Z2SAL translation strategy • Basic types, free types, schemas • The mathematical toolkit • Evaluation and performance translations andcircumlocutions! ABZ Conference, London 2008
What Tools for Z? • CADiZ (Toyn & McDermid) • type checker, schema layout • CZT project (Miller, et al.) • Parser, checker for LaTeX-Z/ZML markup of ISO-Z • AST toolkit for java … more modules to follow • ProZ (Plagge & Leuschel) • validates Z, based on ProB tool (Leuschel & Butler) • Alloy and Z (Bolton) • recoding Z in Alloy, check refinements • SAL translation (Smith & Wildman; Derrick et al.) • leverage existing checkers, rich input language ABZ Conference, London 2008
Advantages of • Symbolic Analysis Laboratory • from SRI (de Moura, et al.), good user base • rich input language has finite types, tuples, arrays, records, recursion (?), modules … • core engine based on BDD compilation, symbolic simulation using Bűchi automata • many tools: simulator, model-checker, bounded model-checker, … • checks both LTL and CTL properties • Z-to-SAL translation strategy • perhaps easier than building a native Z model-checker ABZ Conference, London 2008
Z2 Issues • Bounding the infinite • Z supports infinite models, uninterpreted symbols • SAL needs finite models, concrete bounded ranges • Mismatched models • Z has separate operation schemas acting upon the data • SAL compiles all input, output, local vars into a single FSM with transitions representing the operations • Z functions are partial; SAL functions are total • Monolithic set types; vs. judgements on ordered variables • Non-constructive specifications • Z can express non-constructive specifications • SAL tools require a computable update step ABZ Conference, London 2008
Z2 Translator • Bespoke Z parser/SAL generator • we use our own Java parser for LaTeX-Z • allows rapid prototyping, experimentation • much easier than (poorly documented ) CZT ASTs • Optimisation during analysis • model bounds set by range indicators found in the Z • early elimination of trivially satisfied predicates • Template-driven generation • Z structures map onto related SAL structures • we use our own SAL libraries for the Z math toolkit ABZ Conference, London 2008
Z2 Strategy • Types, constants • translate unbounded Z types into bounded SAL types • translate uninterpreted Z constants into SAL variables, or simplify to constants (by symbolic reasoning) • State, operation schema variables • translate state schema vars into LOCAL vars • translate operation in?, out! to INPUT, OUTPUT vars • State init, operation schemas • translate all schemas into an executable MODULE • Z operations become the transitions of the FSM • Z pre-, post-conditions become SAL guarded commands ABZ Conference, London 2008
Z Types • Built-in types ¥1ͥ͢NZNAT : TYPE = [1..3]; NAT : TYPE = [0..3]; INT : TYPE = [-1..3]; • Basic types [PERSON] PERSON : TYPE = {PERSON__1, PERSON__2, PERSON__3}; • Free types REPORT ::= REPORT : TYPE = DATATYPEok | ok,error «MESSAGE» error (message : MESSAGE) END; ABZ Conference, London 2008
Z Constants • Uninterpreted • Either, pick a suitable constant value: max : ¥max : NAT = 3; • Or, treat as a local variable: max : ¥LOCAL max : NAT • Axiomatic Definitions • Treat as a constrained local variable: max : ¥ | max < 3 LOCAL max : NAT … DEFINITION invariant__ = … AND max < 3 … … more on invariant__ next … ABZ Conference, London 2008
Z State Schema • Data declarations • treat as local vars in FSM module • State predicate • define var invariant__as an abbreviation State State : MODULE = BEGIN LOCAL level : NAT LOCAL invariant__ : BOOLEAN … DEFINITION invariant__ = (1 < level AND level <= max … ) …END; level : ¥ 1 < level max ABZ Conference, London 2008
Z Init Schema – 1 • Initialisation • set of assignments • Problems • SAL init, update is constructive • Z may be equational State : MODULE = BEGIN LOCAL level : NAT … DEFINITION … INITIALIZATION level = 2; … …END; Init State level = 2 … how to handle? … ABZ Conference, London 2008
Guarded Commands • SAL transition language • usual syntax: if guard then constructive assignments [ c1 AND c2 … AND cn --> v1’ = e1; v2’ = e2; … vn’ = en ] • Z2SAL translation idea : • move all update expressions back into the guard • enables equational reasoning for update expressions [ c1 AND c2 … AND cn AND v1’ = e1 AND v2’ = e2 … AND vn’ = en --> v1’ IN { x : NAT | TRUE }; v2’ IN { y : INT | TRUE }; … vn’ IN { z : NAT | TRUE }; ] sense: vars exist a posteriori ABZ Conference, London 2008
Z Init Schema – 2 • Non-constructive • if the assignment holds • then the initial state isvalid (empty consequent) • A bonus for Z • can assert the invariantin the initial state • abbreviates a largeconjunction of terms State : MODULE = BEGIN LOCAL level : NAT … DEFINITION … INITIALIZATION [ level = 2 AND invariant__ --> ] …END; ABZ Conference, London 2008
Z Operation Schema – 1 • Input, output vars • exist in one SAL scope • must rename uniquely State : MODULE = BEGIN LOCAL level : NAT INPUT Inc__in? : NAT OUTPUT Inc__out_ : REPORT … DEFINITION invariant__ = … INITIALIZATION … AND invariant__ … TRANSITION … AND invariant__’ … …END; Inc Δ Statein? : ¥out! : REPORT level + in? maxlevel’ = level + in?out! = ok assert invariant__’ after each step… ABZ Conference, London 2008
Z Operation Schema – 2 State : MODULE = BEGIN LOCAL level : NAT INPUT Inc__in? : NAT OUTPUT Inc__out_ : REPORT … TRANSITION [ Inc : level + Inc__in? <= max AND level’ = level + Inc__in? AND Inc__out_’ = ok AND invariant__’ --> level’ IN { x : NAT | TRUE} [] … ]END; • Pre-, post-conditions • guarded commands • update FSM vars Inc Δ Statein? : ¥out! : REPORT level + in? maxlevel’ = level + in?out! = ok ABZ Conference, London 2008
Z2 MathToolkit • General strategy • define Z math data types in separate SAL text-units • parameterized CONTEXTs reused with different types • Sets, relations • translate sets, relations into Bryant’s ordered propositions • specific problems with cardinality, product-types • Functions, sequences, bags • translate partial Z functions into total SAL functions • requires bottom elements, rules for bottom • still working on sequences, bags ABZ Conference, London 2008
Set Context set {T : TYPE;} : CONTEXT = BEGIN Set : TYPE = [T -> BOOLEAN]; empty : Set = LAMBDA (elem : T) : FALSE; … contains? (set : Set, elem : T) : BOOLEAN = set(elem); union (setA : Set, setB : Set) : Set = LAMBDA (elem : T) : setA(elem) OR setB(elem); …END LOCAL members : set{PERSON;} ! SetINITIALIZATION members = set{PERSON;} ! empty set definition; and usage ABZ Conference, London 2008
Ordered Propositions • Bryant’s encoding for sets • conversion into ordered propositions over elements • monolithic “set” has no direct representation • set type is a function from element boolean • polylithic judgements over ordered elements • Pros and Cons • highly efficient compilation into BDDs • set-operations boolean graphs for each element • difficult to count the elements in a set • but Z needs a cardinality operation ABZ Conference, London 2008
Brute Force Counting count3 {T : TYPE; e1, e2, e3 : T} : CONTEXT = BEGIN Set : TYPE = [T -> BOOLEAN]; size? (set : Set) : NATURAL = IF set(e1) THEN 1 ELSE 0 ENDIF + IF set(e2) THEN 1 ELSE 0 ENDIF + IF set(e3) THEN 1 ELSE 0 ENDIF;END LOCAL num : NATLOCAL friends : set{PERSON;} ! Set… num = count3{PERSON; PERSON__1, PERSON__2, PERSON__3} ! size?(friends) … Z2SAL generates counting contexts, as required count3 definition; and usage ABZ Conference, London 2008
Relation Encoding • Follows set encoding • set type ordered propositions over elements • relation type set of pairs ordered props. over pairs • Encoding choices • re-implement all set-ops in the relation context • provide only the rel-ops in the relation context, and re-use all set-ops from the set context • SAL typing issue • set{…}!Set ≠ relation{…}!Relation because type names specific to their local context • solution: pick only one local context to export “public” names by which types are known in main context ABZ Conference, London 2008
Relation Context relation {X, Y : TYPE;} : CONTEXT = BEGINXY : TYPE = [X, Y]; Domain : TYPE = [X -> BOOLEAN]; Relation : TYPE = [XY -> BOOLEAN]; … domain (rel : Relation) : Domain = LAMBDA (x : X) : EXISTS (y : Y) : LET (pair : XY) = (x, y) IN rel(pair); …END PERSON__X__NAT : TYPE = [PERSON, NAT];LOCAL phonebook : set{PERSON__X__NAT;} ! Set… friends = relation{PERSON, NAT;} ! domain(phonebook) … SAL bug : type subst. expects single symbol; can’t subst. structure relation definition; and usage ABZ Conference, London 2008
Partitioning Z MathOps • Multiple contexts • relation type also defined as set of pairs • allows reuse of set-ops for relations • specific rel-ops provided by relation context • can we extend this idea? • Partitioning criteria • package mathops by the number of type params • eg: give separate contexts for closure{X;}, relation{X,Y;} and compose{X,Y,Z;} ABZ Conference, London 2008
Function Encoding • Follow relation encoding? • function type set of pairs similar to relation impose extra restrictions on range • supports empty, partial, mutable functions • slower execution, bigger search space • Follow native SAL encoding? • function type ordered mappings over elements • only supports total functions • faster execution, close to BDD encoding • Totalising strategy • by extending partial types with bottom values ABZ Conference, London 2008
Function Context function {X, Y : TYPE; xb : X, yb : Y} : CONTEXT = BEGIN Function : TYPE = [X -> Y]; Domain : TYPE = [X -> BOOLEAN]; … domain (fun : Function) : Domain = LAMBDA (x : X) : fun(x) /= yb; …END NAT : TYPE = [0..4];PERSON : TYPE = {PERSON__1, PERSON__2, … PERSON__B};LOCAL passport : [PERSON -> NAT]LOCAL citizens : set{PERSON;} ! Set … citizens = function{PERSON, NAT; PERSON__B, 4} ! domain(passport) … xb, yb are formal params for bottom sentinel value, or explicit bottom ABZ Conference, London 2008
Extended Invariant NAT : TYPE = [0..4];PERSON : TYPE = {PERSON__1, PERSON__2, … PERSON__B};LOCAL passport : [PERSON -> NAT]INPUT Apply__citizen? : PERSONOUTPUT Apply__passid_ : NATDEFINITION invariant__ = ( … AND Apply__citizen? /= PERSON__B AND Apply__passid_ /= 4 … AND passport(PERSON__B) = 4 …) All Z inputs, outputs must be well-defined f(xb) = yb asserted globally for each fn shorter fn defns ABZ Conference, London 2008
Function Types • Z function typology • partial or total, combined with • unmarked, surjective, injective, bijective • Encode as distinct SAL types? • would require duplicated function contexts • provide semantic predicates, rather than extra syntax surjective? (fun : Function) : BOOLEAN = FORALL (y : Y) : EXISTS (x : X) : fun(x) = y; ABZ Conference, London 2008
Translation Templates • Set insertion • friends’ = friends U {pers?} • Function insertion • passport’ = passport Å {citizen? a passid!} …where the literal SAL would be very inefficient… insert (set : Set, new : T) : Set = LAMBDA (elem : T) : elem = new OR set(elem); insert (fun : Function, pair : XY) : Function = LAMBDA (x : X) : IF pair.1 = x THEN pair.2 ELSE fun(x) ENDIF; Z2SAL identifies cases with singleton sets … likewise for singleton set, function subtraction… ABZ Conference, London 2008
Z2 Evaluation • Parser evaluation strategy • analyze diverse handwritten LaTeX-Z specs • extend parser to recognise alternative LaTeX forms • inspect SAL output, simulate SAL output • Math toolkit evaluation strategy • create a CONTEXT for a given Z math data type • simulate with many Z specs using this data type • test using counter-theorems …see next slide… • Example findings • can shrink state-space by clamping initial outputs • semantic function properties that don’t apply to Æ ABZ Conference, London 2008
Counter-Theorem LOCAL members : set{PERSON;} ! SetLOCAL rented : set{PERSON__X__TITLE;} ! SetLOCAL stockLevel : [TITLE -> NAT]INITIALIZATION [ …]… th1 : THEOREM State |– G( set{PERSON__X__TITLE;} ! empty? (rented) ); Counter-theorem says: “the State module allows us to derive that the relation rented is always empty”, expected not to hold. …all vars initialised to empty sets/relations/functions… ABZ Conference, London 2008
Proof Trace After 3 steps, the counter-theorem is disproved; so the negationholds; i.e. it is possible for a person to rent at least one video ABZ Conference, London 2008
Z2 Performance • Video shop example in the paper • 3 base types: PERSON, TITLE, NAT • 4 constructed types: pair, set, relation, function • 3 local vars (of set, relation, function types) • 8 input/output vars (of basic types) • 5 ops (rentVideo, addTitle, delTitle, addMember, copiesOut) • SAL compilation and execution times • about 6-7 seconds to compile to BDDs, Bűchi automata • counter-theorems disproved in 1-2 seconds • 11,664 initial states 61,568,640 states after 5 steps ABZ Conference, London 2008
Z2 What Next? • Sequences and bags • experimenting with SAL records for sequences • extra field stores length of the sequence • issues in preserving the order of a sequence • Porting to CZT • MSc team project adapted CZT parser, AST • used Visitor-pattern to generate similar SAL output • poorly-documented AST is fairly hard to use • PhD project • provable refinement of Z-specs by model-checking SAL translation ABZ Conference, London 2008
Z2 Thank You! John Derrick, Siobhán North and Anthony Simons Department of Computer ScienceUniversity of Sheffield ABZ Conference, London 2008