1 / 0

Aerosol and climate

Aerosol and climate. Chul Eddy Chung ( 정 철 ) GIST, Korea. How does aerosol change climate?. Direct effect: Aerosol absorbs or scatters radiation in the atmosphere. Aerosols, except dust, interfere mainly with solar radiation.

craig
Download Presentation

Aerosol and climate

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Aerosol and climate

    Chul Eddy Chung ( 정 철) GIST, Korea
  2. How does aerosol change climate? Direct effect: Aerosol absorbs or scatters radiation in the atmosphere. Aerosols, except dust, interfere mainly with solar radiation. Indirect effect: Some aerosols act as cloud condensation nuclei (CCN), thus affecting cloud albedo and lifetime (so-called indirect effect). Darkening effect: Dark color aerosols can be deposited on sea ice, snow packs and glaciers, thus darkening the snow and ice surfaces, and enhancing the absorption of sunlight. Dark aerosols can go inside of a raindrop and enhance solar radiation absorption. Semi-direct effect: Some of the aerosols can absorb sunlight efficiently and heat the atmosphere. This can burn cloud.
  3. Radiative forcing, Climate forcing External change: Increased CO2, increased aerosol, etc. Radiative forcing Global Ts change
  4. AOD (Aerosol Optical Depth) When a beam of light is attenuated, we call this attenuation extinction. Extinction is a result of scattering plus absorption. Aerosols can scatter and absorb light, and the attenuation due to aerosol is called aerosol extinction. Aerosol extinction will weaken the light intensity from IλtoIλ+ dIλafter traversing a thickness dsin the direction of its propagation. λ represents wavelength. Then, the following equation holds: d Iλ= −kλρIλds(1) where ρ is the density of the material, and kλdenotes the mass extinction cross section (in units of area per mass). kλρis referred to as the aerosol extinction coefficient, whose units are given in terms of length (typically, cm−1). The aerosol extinction coefficient is the sum of the aerosol scattering coefficient and the aerosol absorption coefficient.
  5. 2 AOD vs. aerosol mass : Estimated by Magi (2009, 2011)
  6. Annual-mean clear-sky aerosol forcing as a function of AOD at 550 nm. The simulation is made with a Monte-Carlo radiation model as in Chung et al. (2005), which only considered solar radiation. Specified parameters are SSA=0.19 at all the wavelengths, ASY=0.7 at 550 nm, α=1.4, and land surface albedo of 0.15 at a latitude of 21˚N.
  7. AOD (Aerosol Optical Depth) = AOT
  8. SSA (Single Scattering Albedo) The SSA is defined as the ratio of the scattering to the extinction. Extinction is the sum of scattering and absorption. When photons are scattered, the wavelength remains unchanged. SSA is a function of wavelength.
  9. BCis unique! What is BC? So-called soot emitted during incomplete combustion of hydrocarbon is blackish or brownish in color. Soot quickly evolves into aggregates of fine particles [Katrinak et al.1993]. These fine particles are called spherules or monomers. Aggregate soot particle consists of pure carbon and other minor components, and was referred to as soot carbon by Andreae and Gelencsér [2006]. We refer to this soot carbon as black carbon (BC) here. A BC particle Monomer or spherule
  10. Previous studies One of the issues in understanding the wide range of the model based estimates is whether BC is internally mixed or externally mixed with other aerosols in the calculation. Studies (e.g., Moffet and Prather, 2009) have shown that BC particles commonly exist in the ambient atmosphere as coated by scattering material such as sulfate, organics, nitrate. Many of the model based estimates treat BC as 100% externally mixed with other aerosols [Textoret al. 2006]. When BC is coated by scattering material, BC forcing is estimated to be larger [Jacobson 2001]. Internally mixed BC BC
  11. SSA andaerosol forcing
  12. SSA (Single Scattering Albedo)
  13. ASY (Asymmetry Parameter) When aerosols scatter light, the phase function describes the angular distribution of scattered energy. The phase function P(cosΘ) is a normalized function, such that where Θ refers to the angle between the direction of incoming light and that of the scattered light. When Θ < π/2, the scattering is called forward scattering, while the scattering is backward when Θ > π/2. The asymmetry parameter, or asymmetry factor, g is defined as follows:
  14. ASY andaerosol forcing
More Related