200 likes | 211 Views
This lecture introduces the Laplace transform and its applications in solving linear, time-invariant differential equations. It also covers complex numbers and their operations.
E N D
動態系統建模分析與控制 Lecture2The Laplace Transform Instructor: Chen-Hsiung Yang Dynamic System Modeling Analysis and Control
Outline 2-1 Introduction 2-2 Complex numbers, complex variables, and complex functions 2-3 Laplace transformation 2-4 Inverse laplace transformation 2-5 Solving linear, time-invariant differential equations
2-1 Introduction • Section 2-2 reviews complex numbers • Section 2-3 defines the Laplace transformation and gives Laplace transforms of several common functions of time. Also examined are some of the most important Laplace transform theorems that apply to linear system analysis. • Section 2-4 deals with the inverse Laplace transformation . • Section 2-5 presents the Laplace transform approach to the linear, time-invariant differential equation.
2-2 Complex Numbers, Complex Variables, and Complex Functions • Complex number z = x + jy • In converting complex numbers to polar form rectangular • To convert complex numbers to rectangular form from polar • Complex number Complex conjugate
2-2 Complex Numbers, Complex Variables, and Complex Functions(Cont.) • Euler’s theorem →
2-2 Complex Numbers, Complex Variables, and Complex Functions(Cont.) • Complex algebra • Equality of complex numbers • Addition • Subtraction • Power and roots • Comments: &
2-2 Complex Numbers, Complex Variables, and Complex Functions(Cont.) • Complex algebra • Equality of complex numbers • Multiplication • ∵ Counterclockwise rotation by 90 ° ∴ • ∵ ∴ • In polar form ∵ if ∴ ∵ if ∴
2-2 Complex Numbers, Complex Variables, and Complex Functions(Cont.) • Complex algebra • Equality of complex numbers • Division • ∵ ∴ • ∵ ∴ • Counterclockwise rotation by 90 ° • ∴ or
2-3 Laplace Transformation • Laplace Transformation • Define • Laplace transform: • Inverse laplace transform :
2-3 Laplace Transformation(Cont.) • Laplace Transformation-Example • Exponential function • Step function • Unit Step function
2-3 Laplace Transformation(Cont.) • Laplace Transformation-Example • Ramp function • Sinusoidal function • <note>
2-3 Laplace Transformation(Cont.) • Laplace Transformation-Example • Pulse function • Impulse function
2-3 Laplace Transformation(Cont.) • Laplace Transformation-Theorem • Differentiation theorem • Integration theorem
2-3 Laplace Transformation(Cont.) • Laplace Transformation-Theorem • Final-value theorem • Initial-value theorem
2-4 Inverse Laplace Transformation • Partial-fraction expansion • F(s) involves distinct poles only
2-4 Inverse Laplace Transformation (Cont.) • Partial-fraction expansion • F(s) involves distinct poles only <Note>
2-4 Inverse Laplace Transformation (Cont.) • Laplace Transformation • F(s) involves multiple poles
2-5 Solving linear, time-invariant differential equations(Cont.)