600 likes | 707 Views
« Chocs sans collisions : étude d’objet astrophysique par les satellites Cluster ». Vladimir Krasnoselskikh + équipe Plasma Spatial LPCE / CNRS-University of Orleans, and Cluster colleagues
E N D
« Chocs sans collisions : étude d’objet astrophysique par les satellites Cluster » Vladimir Krasnoselskikh + équipe Plasma Spatial LPCE / CNRS-University of Orleans, and Cluster colleagues S. Bale, M. Balikhin, P. Decreau, T. Horbury, H. Kucharek, V. Lobzin, M. Dunlop, M. Scholer, S. Schwartz, S. Walker and others
Collisionless shocks : new results from Cluster Plan • Shocks in space plasmas and in astrophysics • Opened questions in shock physics • Simulations and theory • Multi-point measurements, what can they add to single satellite studies in space: Cluster mission • Small scale structure of the electric fields • Problem of stationarity • Problem of particle acceleration.
Collisionless shocks: new results from Cluster Supernova remnant in Magellan cloude
Collisionless shocks : new results from ClusterEarth’s bow shock Tsurutani and Rodriguez, 1981
MHD BLAST WAVES FROM POINT AND CYLINDRICAL SOURCES: COMPARISON WITH OBSERVATIONS OF EIT WAVES AND DIMMINGS
Collisionless shocks : new results from Cluster From Giacalone et al.,
Notion de 2 nombre de Mach critique • 1985: Krasnoselskikh, Nonlinear motions of a plasma across a magnetic field, Sov. Phys. JETP • 1986: Arefiev, Krasnoselskikh, Balikhin, Gedalin, Lominadze, Influence of reflected ions on the structure of quasi-perpendicular collisionless shock waves, Proceesings of the Jiunt Varenna-Abastumani International School-Workshop on Plasma Astrophysics, ESA SP-251 • 1988:Galeev, Krasnoselskikh, Lobzin, Sov. J. of Plasma Physics • 2002:Krasnoselskikh, Lembege, Savoini, Lobzin, Physics of Plasmas
Conséquences: • Pour les nombres de Mach « avant critiques » apparition des structures de petites échelles • Variation des amplitudes des élements de la structure : « overshoot », « downshoot » et cetera • Apparition des multiples « fronts» • Différence de la structure vus par différents satellites
‘four points’ derived vectors (1) Analysis methods for Multi-Spacecraft data G.Pashman and P. Daly, Eds. • Velocity of a planar boundary (normal vector n) from individual SC times and positions at the crossings (ra – r4 ) n = V (ta - t4) na 24 / 08 / 01 7/23
‘four points’ derived vectors (2) • Spatial gradient of density Least square estimation, from the four positions ra,and the four density values na at a given time na 24 / 08 / 01 7/23
Shock questions • Reformation • Variability • Details of the shock transition • How do scales of parts of the shock vary with shock parameters (Mach number, BN, etc)? • Which parts of the shock transition are variable? Cluster: • Timings shock orientation and speed • Multiple encounters with same shock average profile, variability
Small scale electric field structuresData Sources Electric field from EFW • Sampling 25 Hz • 2 components in the spin plane Magnetic field from FGM • Resolution 5s-1 • Timing normals Density from WHISPER
Small scale electric field structureNormal Incidence Frame Walker et al., 2005 Shock frame moves with a velocity VNIF in the plane tangential to the shock such that the upstream flow is directed along the shock normal
Vsh=115kms-1 n=(0.96, -0.23, 0.13) θBn~77 deg Ma~2.8
Vsh=49kms-1 n=(0.94, -0.17, 0.29) θBn~77 deg
Walker et al., 2005 Scale size of spike-like features
Scale size V Ma Walker et al., 2005
Walker et al., 2005 ΔE V θBn
Horbury et al. 2001 A typical shock • Select several shocks • Must have similar profiles at all four spacecraft • No nearby solar wind features • Feb-May 2001 • 600 km separations • 33 shocks in set
Horbury et al., 2001 Averaging the profile • Synchronise at four spacecraft normal, speed • Plot in shock coordinates • Some variability between spacecraft, but large scale structure similar • MA~3.9 • BN~87º • Mcrit1=4.3; Mcrit2=6.1
Undershoot Peak Up Down Courtesy of Tim Horbury Enhancement of |B| • |B| for shock, at peak and downstream, relative to upstream value • Dependence of peak value on MA
Undershoot Peak Up Down Courtesy of Tim Horbury Shock overshoot and undershoot • How big are the overshoot and undershoot amplitudes? • Plotted relative to downstream |B| • Uses average profile
Courtesy of Tim Horbury Shock ramp scale • MA~1.9 • BN~88º • Average ramp profile often well described by exponential rise • Fit scale of ramp • Note: fitted “scale” is not total size of shock • 6 of 33 shocks do not have “good” ramps
Courtesy of Tim Horbury Shock ramp scale • Ramp scale increases with MA and with less perpendicular shocks • Note: absolute values uncertain
Courtesy of Tim Horbury Regions of variability • MA~3.2 • BN~75º • Critical MA ~ 1.7, 2.4 • Measurements up to 18s apart • Variability in foot amplitude, peak waves • Different undershoot scale
Courtesy of Tim Horbury Variability of the shock ramp • Cross-correlate profiles through shock ramp • Poor statistics • Significant: normal-perpendicular field components decorrelate with time, not space: waves? • Field magnitude does not significantly decorrelate on these time and space scales
Undershoot Peak Up Down Courtesy of Tim Horbury Variability of the peak |B| • Peak |B| for each spacecraft, relative to peak |B| in averaged profile • Higher variability at larger MA • Evidence of reformation
Courtesy of Tim Horbury Summary for problem of non-stationarity • Measurements at 600 km separations • Four profiles “average” shock profile • Variability of overshoot and undershoot amplitudes • Exponential ramp, scale ~c/pi, increases with Mach number • Variability of peak |B|, higher with higher Mach number • Evidence for temporal, rather than spatial, variability of shock front Future: • Compilation of shock list (CIS/FGM/EFW/WHISPER, …) better statistics • Variability of parts of the shock
Collisionless shocks: new results from Cluster(from Kis et al., 2004) Vsw (km/sec) 0 -400 -800 18 February 2003 20 0 -20 B (nT) Bx,By,Bz 0.02 0.01 0 N(cm-3) 12 14 16 18 20 22
Collisionless shocks:new results from Cluster Energetic particles (from Kis et al., 2004) Distance from the shock (RE) 10-1 10-2 10-3 10-4 energetic particles density (cm-3) 24-32 keV 0 2 4 6 8 10