1 / 22

Newton’s Divided Difference Polynomial Method of Interpolation

Newton’s Divided Difference Polynomial Method of Interpolation. Chemical Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates.

csilla
Download Presentation

Newton’s Divided Difference Polynomial Method of Interpolation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Newton’s Divided Difference Polynomial Method of Interpolation Chemical Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates http://numericalmethods.eng.usf.edu

  2. Newton’s Divided Difference Method of Interpolationhttp://numericalmethods.eng.usf.edu

  3. What is Interpolation ? Given (x0,y0), (x1,y1), …… (xn,yn), find the value of ‘y’ at a value of ‘x’ that is not given. http://numericalmethods.eng.usf.edu

  4. Interpolants Polynomials are the most common choice of interpolants because they are easy to: • Evaluate • Differentiate, and • Integrate. http://numericalmethods.eng.usf.edu

  5. Newton’s Divided Difference Method Linear interpolation: Given pass a linear interpolant through the data where http://numericalmethods.eng.usf.edu

  6. Example To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 61°C. The specific heat of water is given as a function of time in Table 1. Use Newton’s divided difference method with a first order and then a second order polynomial to determine the value of the specific heat at T = 61°C. Table 1 Specific heat of water as a function of temperature. Figure 2 Specific heat of water vs. temperature. http://numericalmethods.eng.usf.edu

  7. Linear Interpolation http://numericalmethods.eng.usf.edu

  8. Linear Interpolation (contd) http://numericalmethods.eng.usf.edu

  9. Quadratic Interpolation http://numericalmethods.eng.usf.edu

  10. Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

  11. Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

  12. Quadratic Interpolation (contd) http://numericalmethods.eng.usf.edu

  13. General Form where Rewriting http://numericalmethods.eng.usf.edu

  14. General Form http://numericalmethods.eng.usf.edu

  15. General form http://numericalmethods.eng.usf.edu

  16. Example To find how much heat is required to bring a kettle of water to its boiling point, you are asked to calculate the specific heat of water at 61°C. The specific heat of water is given as a function of time in Table 1. Use Newton’s divided difference method with a third order polynomial to determine the value of the specific heat at T = 61°C. Table 1 Specific heat of water as a function of temperature. Figure 2 Specific heat of water vs. temperature. http://numericalmethods.eng.usf.edu

  17. Example http://numericalmethods.eng.usf.edu

  18. Example http://numericalmethods.eng.usf.edu

  19. Example http://numericalmethods.eng.usf.edu

  20. Comparison Table http://numericalmethods.eng.usf.edu

  21. Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/newton_divided_difference_method.html

  22. THE END http://numericalmethods.eng.usf.edu

More Related