1 / 16

S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Study of proton-induced fission of actinides based on the measurements of fission fragment's characteristics by Multi-Wire Proportional gas Counters (MWPC). S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval Institut de Physique Nuclaire, UCL, Louvain-la-Neuve, Belgium.

curry
Download Presentation

S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Study of proton-induced fission of actinides based on the measurements of fission fragment's characteristics by Multi-Wire Proportional gas Counters (MWPC) S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval Institut de Physique Nuclaire, UCL, Louvain-la-Neuve, Belgium

  2. General scheme of the experimental set-up Counters for radioactivity control MWPC 1,2 large active area X,Y Multi Wire Proportional Counters GJ 1 MWPC 1 Actinide’s target Proton beam FARADAY GJ 2 MWPC 2 GJ 1,2 Microchannel-Si diode assembly DEMON liquid-scintillator cells

  3. MWPC experimental set-up(top view) 60cm Xanode Yanode MASK 30cm MWPC-1 position actinide’s target 45º Proton beam Cathode MASK Cathode -135º Yi1 MWPC-2 position 30cm Yi2 Yanode T0i Xanode 60cm Xi1 Xi2

  4. Y X Y12 MASK X12 X11 Y11 Calibration of anode's signal X11-X12 [ch.] Y11-Y12 [ch.] Y1[mm]=C*(Y11-Y12)[ch]+D X1[mm]=A*(X11-X12)[ch]+B Y1[mm] X1[mm] X11-X12[ch] Y11-Y12[ch]

  5. 30cm 60cm Calibration of cathode's signal for the same solid angle limitation: Toffset=2·T01 – T01~ T01=Toffset+D/v T01~=Toffset+D~/v D~=2·D 0º<Θ<1º T01 T01~ 1º<Θ<2º T01 T01~ 4º<Θ<5º 2º<Θ<3º 3º<Θ<4º T01~ T01 T01~ T01 T01 T01~

  6. Monitoring of cyclotron time-characteristics ΔTγ= ΔToffset 1ch(MWPC)=0.5ns 1ch(DEMON)=1.0ns Observation of gamma-peak by DEMON’s detector (liquid scintillator) Tγ(DEMON)

  7. Coincidence of cathode’s signals MWPC-1 Min<T01<Max MWPC-2 Min<T02<Max T02 T01

  8. T01 X12 X11 Anode’s signals association: delay-line conditions T01 – cathode fast signal X11, X12 – anode signals from both edges of delay-line Const-1<{X11+X12-2·T01+Anorm} {X11+X12-2·T01+Anorm}<Const-2 T01

  9. Fission event reconstruction: MWPCs->LAB(Dekart) Ymwpc1 XLAB YLAB X(Y)1=(X(Y)11-X(Y)12)·A+B ; T1=T01·0.5+Toffset-1 X(Y)2=(X(Y)22-X(Y)21)·A+B ; T2=T02·0.5+Toffset-2 Ymwpc2 D1 Z1LAB {X2,Y2,T2} Xmwpc1 L2 θ1=45º Y2LAB X1LAB Y1LAB L1 X2LAB ZLAB Z2LAB θ2=-135º {X1,Y1,T1} D2 Fission fragment #1 X1LAB=D1·Sinθ1-X1·Cosθ1 Z1LAB=D1·Cosθ1+X1·Sinθ1 Y1LAB=Y1 Xmwpc2 Fission fragment #2 X2LAB=D2·Sinθ2+X2·Cosθ2 Z2LAB=D2·Cosθ2-X2·Sinθ2 Y2LAB=Y2

  10. Fission event reconstruction (LAB): Dekart->Polar XLAB YLAB θ2s=arcCos(Z2LAB/L2) φ2s=arcTan(Y2LAB/X2LAB) θ1s=arcCos(Z1LAB/L1) φ1s=arcTan(Y1LAB/X1LAB) φ2s Z1LAB θ2s L2 Y1LAB Y2LAB X1LAB θ1s X2LAB φ1s ZLAB L1 Z2LAB -180º<φs<180º 0º<θs<180º φ1s θ1s

  11. m1 v1LAB v1CM mp, vp ψ1 θ1s vcm M, v=0 Mc, vc.m. θ2s ψ2 v2LAB v2CM m2 Center-mass coordinates Known values: θ1s, θ2s, v1LAB, v2LAB Velocity of center of mass: Velocities of fragments in CM:

  12. m1 v1LAB (v1LAB)┴ v1CM θ1s vcm θ2s (v2LAB)┴ v2CM v2LAB m2 Determination of FF’s masses: first approximation Momentum conservation perpendicular to the beam axis: (m10·v10)┴= (m20·v20)┴ Masses of FF, target nucleus and projectile: m10+m20=Mtarget+Mprojectile-Mpre R = (v20)┴ / (v10)┴ m10= Mtarget+Mprojectile-Mpre/ ( 1 + 1 / R ) m20= Mtarget+Mprojectile-Mpre/ ( 1 + R ) Conservation of charge’s density: MC’ / ZC’ = m10 / z10 = m20 / z20 z10= m10·ZC’/ MC’ z20= m20·ZC’/ MC’ Non-relativistic formula for kinetic energy: E10= (1/2)·m10·(v10)2 E20= (1/2)·m20·(v20)2

  13. Target θtarget θ1S d1 d d2 θ2S Calculation of energy losses Correction for thickness d1=|d/Cos(θ1S - θtarget)| d2=|d/Cos(θ2S + θtarget)| Correction of energy: E11= E10+E1loss E21= E20+E2loss Velocities “in target”: Velocity of center of mass “in target”: Velocities of fragments in CM “in target”

  14. Algorithm for FF mass determination Known: v10, v20 – velocities “in MWPC” 1. First approximation “in MWPC”: m10, m20, z10, z20, E10, E20 2. Calculation of energy loss: E11=E10+ΔE1 & E22=E20+ ΔE2 Recalculation of velocities “in target” (using m10, m20): v11 and v21 3. Check the momentum conservation “in target”: (v11·m11)┴= (v21·m21)┴ Recalculate new masses m11, m21 4. Come back to the point of registration “in MWPC”: v10, v20 Set: m10 = m11, m20 = m21 Recalculation of E10, E20, z10, z20

  15. Calculations of energy loss in reaction: 23892U(p,f)→10541Nb+13452Te 1. SRIM – The Stopping and Range of Ions in Matter (J. Ziegler et. all) www.srim.org 2. Bethe-Bloch formula (by W. Leo) 3. Bethe-Bloch formula (by K. Krane) re – classical electron radius Z – atomic number of absorbing material me – electron mass A – atomic weight of absorbing material Na – Avogadro’s number I – mean excitation potential I = 9.76·Z + 58.8·Z-0.19 ρ – density of absorbing material z – charge of incident particle in units of e β=v/c of the incident particle γ = 1/(1-β2)1/2 Wmax – maximum energy transfer in a single collision Wmax = 2·me·c2·(β· γ)2

  16. Calculations of energy loss in reaction: 23892U(p,f)→10541Nb+13452Te ρtarget = 19.043 g/cm3 Dx = 180 μg/cm2 10541Nb 13452Te

More Related