1 / 22

Modeling and Refining Heterogeneous Systems With SystemC-AMS: Application to WSN

Modeling and Refining Heterogeneous Systems With SystemC-AMS: Application to WSN. M. Vasilevski F. Pecheux, N. Beilleau, H. Aboushady K. Einwich*. Laboratory LIP6 University Pierre and Marie Curie, Paris 6, France *Fraunhofer IIS/EAS, Dresden, Germany. March 2008. Issues

cutler
Download Presentation

Modeling and Refining Heterogeneous Systems With SystemC-AMS: Application to WSN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Modeling and Refining HeterogeneousSystems With SystemC-AMS: Application to WSN M. Vasilevski F. Pecheux, N. Beilleau, H. Aboushady K. Einwich* Laboratory LIP6 University Pierre and Marie Curie, Paris 6, France *Fraunhofer IIS/EAS, Dresden, Germany March 2008

  2. Issues • SystemC-AMS Language • Models of Computation • SDF Behavioral Description • SDF Multi-rates • RF and AMS Modeling • AMS Models • RF Models • Wireless Sensor Network Node • Conclusion

  3. Issues : Mixed Systems Design Matlab Verilog-A VHDL-AMS Spice SystemC Verilog VHDL Matlab Verilog-A VHDL-AMS Spice-RF A/D Converter Microcontroller RF Transceiver University Paris 6 Fraunhofer IIS/EAS

  4. Issues • SystemC-AMS Language • Models of Computation • SDF Behavioral Description • SDF Multi-rates • RF and AMS Modeling • AMS Models • RF Models • Wireless Sensor Network Node • Conclusion

  5. 2.a Models of Computation SystemC-AMS SystemC Synchronous Data Flow Linear Network • Models of computation : • Conservative Linear network • Synchronous Data Flow SDF Modeling Formalism LN Modeling Formalism Other Modeling Formalism DE, MoCs (CP,FSM, etc…) LN Solver Other Solver Synchronisation Layer SystemC Simulation Kernel University Paris 6 Fraunhofer IIS/EAS

  6. 2.b SDF Behavioral Description SCA_SDF_MODULE(B) B SCA_SDF_IN<double> Input Output SCA_SDF_OUT<double> Behaviour void sig_proc( ) A C University Paris 6 Fraunhofer IIS/EAS

  7. 2.c SDF Multi-Rates Simulation sample time Simulation rates Cluster Tin Tout A B C 1 2 1 3 2 1 16 kHz 8 Hz 48 kHz 24 kHz University Paris 6 Fraunhofer IIS/EAS

  8. Issues • SystemC-AMS Language • Models of Computation • SDF Behavioral Description • SDF Multi-rates • RF and AMS Modeling • AMS Models • RF Models • Wireless Sensor Network Node • Conclusion

  9. 3.a AMS models : Integrator SCA_SDF_MODULE (integrator) { sca_sdf_in < double >in; sca_sdf_out < double >out; double f; sca_vector < double >NUM,DEN,S; sca_ltf_nd ltf1; void set_coeffs(double A){ DEN (0) = 0.0; DEN (1) = 1.0; NUM (0) = A; } void sig_proc(){ out.write( ltf1(NUM, DEN, S, in.read())); } SCA_CTOR (integrator) {}}; In/Out ports Other Attributes Initialisation method Signal processing method University Paris 6 Fraunhofer IIS/EAS

  10. 3.a AMS models : Decimator SCA_SDF_MODULE (decimator) { sca_sdf_in < double >in; sca_sdf_out < double >out; double old_input; void init(){ in.set_rate(2); out.set_rate(1); old_input=0; } void sig_proc(){ double input=in.read(0)/2; out.write(old_input+input); old_input=input; } SCA_CTOR (decimator){} }; Decimator 2 2 2 University Paris 6 Fraunhofer IIS/EAS

  11. Issues • SystemC-AMS Language • Models of Computation • SDF Behavioral Description • SDF Multi-rates • RF and AMS Modeling • AMS Models • RF Models • Wireless Sensor Network Node • Conclusion

  12. 3.b RF models a1 = f(Power gain, Rin, Rout) a3 = f(a1, IIP3) Na = f(NF) Power gain IIP3 NF Rin Rout Na input output a1x+a3x³ Rout Rin University Paris 6 Fraunhofer IIS/EAS

  13. 3.b RF models : IIP3 and Noise Figure Test FFT BW = 120kHz Power Gain = 10 dB Input amplitude = -16.02 dBm IIP3 = 10 dBm NF = 30 dB University Paris 6 Fraunhofer IIS/EAS

  14. 3.b RF models : Baseband Equivalent X(t) = DC + I1cos(wt) + I2cos(2wt) + I3cos(3wt) + Q1cos(wt) + Q2cos(2wt) + Q2cos(3wt) DC I2 I3 I1 xBB(t) = w 2w 3w 0 Q1 Q2 Q3 University Paris 6 Fraunhofer IIS/EAS

  15. 3.b RF models : Baseband Equivalent Implementation class BB{ double DC,I1,I2,I3, Q1,Q2,Q3; ... BB operator+(BB x)const{ BB z(this->DC+x.DC, this->I1+x.I1, this->I2+x.I2, this->I3+x.I3, this->Q1+x.Q1, this->Q2+x.Q2, this->Q3+x.Q3); return z; } ... }; SCA_SDF_MODULE (adder) { sca_sdf_in < double >inI; sca_sdf_in < double >inQ; sca_sdf_out < double >out; ... void sig_proc () { out.write (inI.read()+ inQ.read()); }... SCA_SDF_MODULE (adder) { sca_sdf_in < BB >inI; sca_sdf_in < BB >inQ; sca_sdf_out < BB >out; ... void sig_proc () { out.write (inI.read()+ inQ.read()); }... University Paris 6 Fraunhofer IIS/EAS

  16. Issues • SystemC-AMS Language • Models of Computation • SDF Behavioral Description • SDF Multi-rates • RF and AMS Modeling • AMS Models • RF Models • Wireless Sensor Network Node • Conclusion

  17. Wireless Sensor Network Node • Wireless sensor network for environmental and physical monitoring: • Temperature, vibration, pressure, motion, polluants University Paris 6 Fraunhofer IIS/EAS

  18. Wireless Sensor Network Node modulator SystemC-AMS SystemC ATMEGA128 8 bits A/D Converter Microcontroller RF Transceiver 2nd order OSR=64 10 bits RZ feedback Application Binary File QPSK fc=2.4GHz decimator 2.4 MHz 8.53 MHz 2.4 GHz University Paris 6 Fraunhofer IIS/EAS

  19. Wireless Sensor Network Node filter mux encoder demux LNA filter ADC : decimator + + - - DAC RF : QPSK 2.4 GHz University Paris 6 Fraunhofer IIS/EAS

  20. Wireless Sensor Network Node : Results Noisy channel DC offset Frequencyoffset Phase mismatch University Paris 6 Fraunhofer IIS/EAS

  21. Wireless Sensor Network Node : Results University Paris 6 Fraunhofer IIS/EAS

  22. Conclusion • Advantages to use SystemC-AMS: • Digital and Analog-Mixed Signal systems simulation • Interface with SystemC • Simulations very fast • C++ based • Polymorphism • Easy to refine components with C++ inheritance ability • Generic declaration of components with C++ templates • Easy software programmer contribution • Example of a free FFT library used for IIP3 test. University Paris 6 Fraunhofer IIS/EAS

More Related