60 likes | 185 Views
How Tall is It?. Megan Johnson Alex Gaskins Thomas Rush Hassan Ali. 30 Degrees. Tan x= opposite/adjacent Tan30=x/336 (336)Tan30=x x≈193.99 inches h= x+ eye height ≈193.99+60 h≈253.99 inches. Short leg. 112√3. Long leg. ∙ Hassan’s Triangle: ∙ 60 inches (eye height)
E N D
How Tall is It? Megan Johnson Alex Gaskins Thomas Rush Hassan Ali
30 Degrees Tan x= opposite/adjacent Tan30=x/336 (336)Tan30=x x≈193.99 inches h= x+ eye height ≈193.99+60 h≈253.99 inches Short leg 112√3 Long leg ∙ Hassan’s Triangle: ∙ 60 inches (eye height) ∙ 28 feet=336 inches (base) 336” Eye height Long leg=336 Short leg=x Short leg=long leg/√3 x=336/√3 =336√3/3 =112√3 h= x + eye height =112√3+60 ≈193.99+60 h≈253.99 60” Base 336”
45 Degrees Tan x= opposite/adjacent Tan45=x/168 (168)Tan45=x X= 168 inches h= x+ eye height = 168+63 h= 231 inches 168” leg₂ Megan’s triangle: 63 inches (eye height) 14 feet=168 inches (base) leg₁ In a 45-45-90 triangle, the two legs are congruent. leg₁=leg₂ 168=168 H= leg + eye height = 168 + 63 = 231 inches 168” 168” eye height base 168”
60 degrees Tan x= opposite/adjacent Tan60=x/84 (84)Tan60=x X≈ 145.49 inches h= x+ eye height ≈145.49+65 ≈210.49 inches Long leg 145.49” Thomas’s triangle: 65 inches (eye height) 7 feet= 84 inches (base) Short leg 84” Eye height Short leg=84 Long leg = x x= 84∙√3 x= 84√3 h= x + eye height =84√3+65 ≈145.49+65 ≈210.49 inches 65” Base 84”
10 degrees Tan x= opposite/adjacent Tan10=x/936 (936)Tan10=x x≈165.04 inches h= x+ eye height ≈165.04+59 h≈224.04 inches 165.04” 936” 59” Alex’s triangle: 59 inches (eye height) 78 feet = 936 inches Base 936”
Conclusion • We used the Trigonometry to find the missing side. • We then used the Special Right Triangle Formulas to find the third and final side to the triangle. • Average Height Calculated 229.87 inches