210 likes | 365 Views
Unifying Kind and Type Inference. Remko van Beusekom & Jeroen Gordijn. Overview. Type inferencing Kind inferencing Example Similarities kind and type inferencing. Overview (2). Implementation problem in uhc Our solution to the problem Conclusion. Approach.
E N D
Unifying Kind and Type Inference Remko van Beusekom & Jeroen Gordijn
Overview • Type inferencing • Kind inferencing • Example • Similarities kind and type inferencing
Overview (2) • Implementation problem in uhc • Our solution to the problem • Conclusion
Approach • Investigate type and kind inferencing • Check the similarities • Investigate the implementations in UHC • Check whether unification is possible
Type inferencing • Check if an (untyped) term can be typed e.g.: (\x.x+1) true can’t be typed (\x.x+1) 2 can be typed.
Kind inferencing • Kinds are “the types of types” • Check if a type definition can be kinded e.g.: (Bool)(Nat)Can’t be kinded (Nat->Bool)(Nat)Can be kinded
Type Inferencing example
= x:X,z:Z C1 = {X = ZV1} C2 = C1 {V1 = Nat V2} x:X z:Z (CT-VAR) (CT-VAR) x : _ |_ _ X |ø {} z : _ |_ _ Z |ø {} (CT-APP) 0 : Nat |ø {} V1 |{V1} C1 (CT-ZERO) (x z) : _ |_ _ 0 : _ |_ _ Nat |ø {} (CT-APP) (x z) 0 : _ |_ _ V2 |{V1,V2} C2 (CT-ABS) X Z V2 C2 {V1,V2} \x:X.\z:Z.(x z) 0 : S | x C
Unifying the constraints • Unify({X = Z V1}, {V1 = Nat V2}) • Unification fails or succeeds • If succeeds then typeable • = [X Z V1, V1Nat V2] • (X Z V2) = (Z (Nat V2)) Z V2
Kind Inferencing example
= X:: _ ,Y:: _ * * * Y :: _ X :: _ _ * * * (K-TVAR) (K-TVAR) X :: _ _ * * Y :: _ * (K-APP) X Y :: _ (K-ABS) 2x * \X.\Y.X Y :: K (* *) * *
Similarities • Walk over the tree. (BOTH) • Introduce placeholders for types/kinds (BOTH) • Introduce placeholders for Constraints (TYPE) • Fill the environment (BOTH) • Fill in the placeholders (BOTH)
The challenge • Type inferencing implemented first • Kind inferencing added by copying parts from type inferencing • Duplicate code • Q: Can we unify these implementations?
Solution to the problem • Generalize the AST • put common constructors in general data type • extra general constructor • Move inferencing code into general code • Problem: extra node in the generalised AST
Implementation in UHC • Different structure
Generalized AST • Unify structure
before unified GenExpr KindExpr KGenExpr KStar KParen GVar GApply GCon GenExpr Kind abstract tree KindExpr KVar KApply KCon KStar KParen
before unified KindExpr TypeExpr GenExpr KGenExpr TGenExpr GVar GApply GenExpr GenExpr Unified tree TypeExpr KindExpr KVar KApply TVar TApply
Conclusion • Not tested, but this should work • Draw back: Lot of work now • Improvement: Future additions/fixes easier