280 likes | 495 Views
Quantum Imaging with Trapped Ions. Joachim von Zanthier 1 Christoph Thiel 1 Thierry Bastin 2 Enrique Solano 3 Girish S. Agarwal 4. 1 Institut für Optik, Information und Photonik, Universität Erlangen-Nürnberg, Germany
E N D
Quantum Imaging with Trapped Ions Joachim von Zanthier1 Christoph Thiel1 Thierry Bastin2 Enrique Solano3 Girish S. Agarwal4 1Institut für Optik, Information und Photonik, Universität Erlangen-Nürnberg, Germany 2Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège au Sart Tilman, Belgium 3Departamento de Química Física, Universidad del País Vasco - Euskal Herriko Unibertsitatea, Bilbao, Spain 4Department of Physics, Oklahoma State University, Stillwater, USA
Quantum Imaging with Trapped Ions Content: I. First and Second Order Correlations in the Fluorescence Light of trapped Ions II. Using higher Order Correlation Functions for Quantum Imaging III. Quantum Imaging of a photon source and an aperture
Young’s Double Slit Experiment Intensity distribution: constructive interference: First-order correlation function
laserfield interference fringes kL I. First-order correlations in the fluorescence light of trapped ions two trapped ions U. Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)
two 2-level atoms: uncorrelated atoms: W. M. Itano et al., PRA 57, 4176 (1998); C. Skornia et al. PRA 64, 063801 (2001) V= first-order correlation function:
coherently scattered light scattered intensity incoherently scattered light 0 2 4 6 8 10 12 sat. parameter s s 0 Mollow Triplett -4 -2 0 2 4 (w – w0)/G
pulsed regime: both ions initially in the excited state G(1) 1- no interferences 0- Detector position r complete „which-way-information“ available or
or I. Second-order correlations in the fluorescence light of trapped ions no which-way-information available regarding two possible quantum paths
Quantum Imaging? Introducing (Glauber’s) correlation functions R. J. Glauber, Phys. Rev. 130, 2529; 131, 2766 (1963) Spatial (intensity) correlation functions: Roy J. Glauber … for his contribution to the quantum theory of optical coherence
collective excitation N single photon detectors … … correlation measurement … … in far-fieldregion of the ions II. Using higher order correlation functions for Quantum Imaging |e N trapped2-level ions |g
Far-field Laser pulse Intensity-intensity correlation G(2) R2 d R1 Trap For two 2-level ions: and Example: Second order correlation function in the fluorescence light of two trapped ions
-1 -0 Example: Second order correlation function in the fluorescence light of two trapped ions
G(2) G(2) G(2) 1- 1- 1- r2 = r1 r2 = const. r2 = -r1 0- 0- 0- Detector position Detector position Detector position Example: Second order correlation function in the fluorescence light of two trapped ions -1 -0 G. S. Agarwal et al., PRA 70, 063816 (2004)
Generalisation to N th order correlations: RN … R3 Higher order correlations in the fluorescence light of trapped ions Far-field Laser pulse … N-times Intensity correlation G(N) Intensity-intensity correlation G(2) R2 d R1 Trap
for n = N : where Example: 4th order correlation function for 4 ions and 4 detectors (N = 4) for any detector positions d1, d2, d3, d4 :
choose : choose : choose :
G(2) Detector position G(2) G(4) Detector position Detector position Higher order correlations in the fluorescence light of trapped ions G(2) r2 = r1 Detector position r2 = const. r2 = -r1
One can show: for any n = N, one can always find suitable detector positions so that one obtains a singlesinusoidal modulation with wave number: C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, G. S. Agarwal, PRL 99, 133603 (2007)
+2. Abbe-Limit: +1. d·sinq=± l q d 0. d ≥ -1. -2. object plane Fourier plane image plane l only if: NA Fringe spacing = Measure of resolution Resolution in classical optics Abbe’s theory of the microscope:“to construct an image from an object the first diffraction order in the Fourier plane must be at least visible”
-p/2 0 +p/2 -p/2 0 +p/2 III. Application: quantum imaging of 8 trapped ions example: 8 ions with separation 2·l detected with versus :
Spacing ofthe ions: Classicmicroscopy Quantummicroscopy Abbe’s theory of microscopic resolution:“to construct an image from an object the first diffraction order in the Fourier plane must be at least visible” III. Application: quantum imaging of 8 trapped ions example: 8 ions detected with versus :
G(2) G(2) III. Application: quantum imaging of an object Light from two atoms passing through an aperture Ch. Thiel et al., quant-ph/0805.1831
G2 for two atoms and two detectors with resolution increased by “2”: G(2) Classical result with one detector: Fresnel-Kirchhoff diffraction formula: for: and: Ch. Thiel et al., quant-ph/0805.1831 III. Application: quantum imaging of an object classical and quantum imaging of a rectangular aperture • in analogy to classical diffraction theory: • Fresnel-Kirchhoff diffraction • Fraunhofer approximation • paraxial approximation
Quantum imaging of an aperture with G(2) using a lens G(2) for r2 = r1 1 0 detector position lens III. Application: quantum imaging of an object Generalization of the quantum imaging scheme Quantum imaging of an aperture with G(2) G(2) for r2 = - r1 1 r1 0 r2 detector position r2=r1
Nth-order correlation functionscan be used for imaging: quantum imaging of a source with visibility of 100% and resolution of l/N Conclusion - Higher order correlation functions show interference pattern even if measured with (in 1. order) incoherent light - Interference pattern of second order correlation function displays visibility of 100% and resolution enhanced by a factor of ”2“ - Same scheme can be used for quantum imaging of an object, either in the Fourier plane of the object or in the image plane of a lens - Same scheme can be used for generating entangled states in long-living internal levels of the photon emitting atoms (see poster session today and Thursday)