160 likes | 312 Views
Beyond the Standard Model. Journées de Prospective Giens April 2, 2012 Dirk Zerwas LAL Orsay. Beyond the Standard Model Higgs Supersymmetry Alternatives to supersymmetry Conclusions. on behalf of the BSM group (Groupe-2). Beyond the Standard Model Higgs. Higgs portal:
E N D
Beyond the Standard Model Journées de Prospective Giens April 2, 2012 Dirk Zerwas LAL Orsay • Beyond the Standard Model Higgs • Supersymmetry • Alternatives to supersymmetry • Conclusions on behalf of the BSM group (Groupe-2)
Beyond the Standard Model Higgs • Higgs portal: • add a hidden sector If the Higgs is at 125GeV: 2-parameter model: ΔH = cos2χ, Γhid LHC: BR=0.60 excl. 2012 ILC: BR=0.02 (±0.005) ΔH: • If no Higgs is observed with the LHC 14TeV 30fb-1 • non-observation of Higgs boson does not exclude its existence
Supersymmetry • fermion boson • has “no” problems with radiative corrections (quadrat. div.) • has a light Higgs Boson (<140GeV) • interesting pheno at the TeV scale 3 (or more) neutral Higgs bosons: h, A, H 1 (or more) charged Higgs boson(s): H± and supersymmetric particles • Many different models: • MSSM (low scale many parameters) • mSUGRA (high scale few parameters) • DSS (SUSY with heavy scalars) • GMSB • AMB • Additional (s)particles: • NMSSM • MRSSM/N=1/N=2 hybrid • and many more ~ ~ ~ ~ ~ • R-parity • production of SUSY particles in pairs • (Cascade-) decays to the lightest SUSY particle • LSP stable, neutral and weakly interacting: neutralino (χ1) • experimental signature: missing ET
Supersymmetry: neutral Higgs bosons Higgs sector: mass of A, tanβ (vev ratio) tanβ ↑: g(Hτ,b) ↑ • D0: • final states with τ and bbb • ATLAS and CMS: • tau pair final states • mA ↑ cross section ↓ • large exclusion with 4.6fb-1 SM-like h mA up to 500GeV, tanβ down to 10
Supersymmetry: charged Higgs boson • Signature for m(H±) <m(top) • top pair production • increase decays of top to tau • larger transverse mass • no excess • exclude as function of BR Interpretation in the MSSM: Exclude down to 2%
Supersymmetry: Rare Decays • Courtesy of flavour group: • Indirect constraint • Bμμ: • MFV in yukawa sector • BR small: |Vtb* Vtq|2 • SUSY Higgs s-channel • tanβ ↑ BR ↑ • LHCb and CMS: • mass peak BR(Bμμ) < 1e-9 (CMS: 1.7e-9) BR(Bsμμ) < 4.5e-9 (CMS:7.7e-9)
Search for Supersymmetry: gluinos and squarks • Signature: • colored particles large (pb) cross sections • many high transverse momentum jets • large missing ET • Measure background from data (CRs)/ • Extrapolate sensitive variable • many cross checks possible • no exciting deviations Equal squark and gluino masses: 1.4TeV
Search for Supersymmetry: 3rd generation • CMS: • inclusive b-tagged analysis • 3rd generation: • large mixing possible • could be lightest squarks • mSUGRA (cascade) • MSSM (direct) • ATLAS sbottom pair production: • 2 b-tagged jets • missing ET • 14TeV: • sensitivity to 2.5TeV colored sparticles • SLHC: • 3TeV colored sparticles • ILC: • small mass differences Exclusion up to 400GeV 5fb-1: sensitivity up to 1TeV
Search for Supersymmetry: Electroweak Sector • Signature: • associated production of charginos and neutralinos • supersymmetric version of WZ (difficult) • leptonic decays 3(and more) leptons (muons,e) • missing ET • Example: • Expect 26±5 Observe: 32 • MSSM limits: • improve on LEP • LHC: • difficult scenario: limits of order 300GeV obtained with increased leptonic BRs (intermediate sleptons) • ILC: • less dependence on BRs • reach down to small mass differences
Measure Supersymmetry • LHC: • 5% level mass measurement • SLHC: • improve to 1% • ILC: • electroweak sector measurements • precision 0.1% • LHC: • 12fold ambiguity • ILC: • solves ambiguities LHC • LHC: • hint on Parameter unification • SLHC: • increases precision • ILC: • “measurement” of unification S-LHC + ILC • Dark matter (deduced): • LHC: • % level with ambiguities • ILC: • 0.1% level
Alternatives to Supersymmetry • Search for new physics: • virtual effect: deviations from the Standard Model • real effect: decay of a resonance Sequential standard model: Z’, W’ heavier version of Z and W Modify couplings to get other variants Search for a resonance Arkani-Hamed, Dvali, Dimopoulos (ADD): N ExtraDim macroscopic (LED) Search for deviations wrt Drell-Yan Randall Sundrum (RS): warped Extra Dimensions 1 additional dimension (compactified) Search for a Graviton resonance decay: ee,μμ,γγ (mass reconstruction)
New Gauge Bosons • Signature: • Z’ decay to lepton (e,μ) pairs • bump in mass spectrum • W’ decay to lepton+neutrino • different models different couplings • LHC 5fb-1 7TeV: • limit at 2.3TeV (Z’SSM) • limit at 2.3TeV(W’SSM) 100fb-1 14TeV: discovery up to 4.5/5.5TeV
Excited Quarks • Signature: • jet-jet decay • bump in mass spectrum • LHC 5fb-1 7TeV: • excited quarks: M> 3.35 TeV • colour octet scalars M> 1.94 TeV • mini-QBH with (6 extra dimensions): quantum gravity scales > 3.96 TeV • quark contact interactionsΛ > 7.8 TeV • LHC 14TeV: • double the reach in mass • contact interaction (ll 100fb-1): 31TeV
Extra dimensions • LHC 2.3fb-1 7TeV: • ADD • Ms: scale of onset of quantum gravity • n: number of extra dimensions • LHC 5fb-1 7TeV: • 2.1TeV for k/Mpl=0.1 (leptons) • 900GeV for k/Mpl=0.01 (photons) (hierarchy) prejudice: reduced Planck scale <10TeV mass of first Graviton excitation • LHC 30fb-1 14TeV (diphotons): • discovery 3.95TeV for k/Mpl=0.1 • discovery 1.6TeV for k/Mpl=0.01
Conclusions • Higgs looking promising • roughly >10% precision at LHC • ILC would gain by factor 10 • easy SUSY easily excluded • difficult SUSY: more luminosity essential and going to 14TeV • ILC: maximum impact for electroweak sector particles • alternative models thoroughly studied • discovery in the multi-TeV range still possible with LHC