320 likes | 682 Views
optiSLang - ANSYS Workbench Interface (optiPlug). A brief introduction Dipl.-Ing. (FH) Andreas Veiz. Benefits of optiPlug. Export your Project directly from ANSYS Workbench Easy selection of the input and output parameters – just „click and go“ Pre-defined problem files and start script
E N D
optiSLang - ANSYS Workbench Interface (optiPlug) A brief introduction Dipl.-Ing. (FH) Andreas Veiz
Benefits of optiPlug • Export your Project directly from ANSYS Workbench • Easy selection of the input and output parameters – just „click and go“ • Pre-defined problem files and start script • Possibility to import selected designs to verify the results
Selecting your cad parameters • Load your CAD geometry (e.g. in ANSYS Design Modeler) • Highlight the desired parameters with a „D“ to add them to theparameter manager. • You can change the parameter values now easily
Verifying the parameters • Verify the values of the selected parameters • Verify the correct allocation of the parameter names to the values Values Allocation
You have selected your geometry parameters of the CAD model. • Now start a new Workbench simulation • Define the analysis
Selecting your parameters in Workbench • Highlight the desired • output parameters with a „P“ to add them to the • parameter manager
Overview input and output parameters • Open the ANSYS Workbench Parameter Manager • You have now an overview of your inputs and outputs • Make sure that every desired parameter is selected properly • Save the simulation and the project before using the interface
Using the optiPlug interface • Click on the optiPlug – write button to start the plug in
Settings of the interface • Define the working directory for optiSLang • Define the project name • Set your default parameter range • Select whether the project should be stochastic oder optimization • Click on Start to export your project now Directory Project name Problem type Parameter range
Importing your project in optiSLang • Close the Workbench simulation and project • Open optiSLang • Import the pre-defined project • Start the project manager • Select „Import“ • Browse for the project • Select theproject file(*.fgpr)
Parametrize the problem • Start the modification of the pre-defined parameters
Modifying the parametrization • Fill in the correct bounds for the analysis (ovierview on sheet 13)
Overview: upper and lower bounds Parameter name value range Flanschbreite_E6_1_DS 50 45-150 Rohrstaerke_E6_2_DS 20 1-50 Einflusstiefe_E6_3_DS 150 140-250 Einflusstiefe2_E6_4_DS 150 140-250 Flanschstaerke_E6_5_DS 20 10-30 Flanschstaerke2_E6_6_DS 20 10-30 Verrundungsbreite_E6_7_DS 10 5-20 Verrundungsbreite2_E6_8_DS 10 5-20 Schraubendurchmesser_E13_9_DS 12 6-24 Schraubenspalt_E13_10_DS 2 0.1-3 Schraubenkopfueberstand_E13_11_DS 10 2-10 Schraubenlage_E13_12_DS 100 65-250 Schraubenkopfstaerke_EX29_13_DS 12 4-24 Schraubenkopfstaerke_EX32_14_DS 12 4-24
Defining the dependent parameters • Remove Verrundungsradius_E6_15_DS and Verrundungsradius2_E6_16_DS from the parameter tree • Mark the value and define a new dependent parameter. • Insert „Verrundungsbreite_E6_7_DS*sqrt(2)“ for Verrundungsradius and „Verrundungsbreite2_E6_8_DS*sqrt(2)“ for Verrundungsradius2
Creating input constraints • Due to the geometry it is necessary to define four input constraints that limit the variation space of the parameters corresponding to the different geometries • Define the four constraints in the constraint section
Creating input constraints The input constraints: 1. Flanschbreite_min (minimum of the flange width) 0 <= Flanschbreite_E6_1_DS-Schraubendurchmesser_E13_9_DS-2*Schraubenkopfueberstand_E13_11_DS-fmax(Verrundungsbreite_E6_7_DS,Verrundungsbreite2_E6_8_DS)-1-1 2. Schraubenlage_min (minimum of the bearing of the screw) 0 <= Schraubenlage_E13_12_DS-Schraubendurchmesser_E13_9_DS/2-Schraubenkopfueberstand_E13_11_DS-fmax(Verrundungsbreite_E6_7_DS,Verrundungsbreite2_E6_8_DS)-Rohrstaerke_E6_2_DS-50-1 3. Schraubenlage_max (maximum of the bearing of the screw) 0 <= Rohrstaerke_E6_2_DS+Flanschbreite_E6_1_DS-Schraubenlage_E13_12_DS-Schraubendurchmesser_E13_9_DS/2-Schraubenkopfueberstand_E13_11_DS+50-1 4. Schraubenspalt_max (maximum of the gap of the screw) 0 <= Schraubenkopfueberstand_E13_11_DS-Schraubenspalt_E13_10_DS-0.2
Starting the Design of Experiments • Save and exit the parametrization • Start the Design of Experiments flow. You see that the startingscript and the problem file is already selected it is pre defined by the plug in • Choose Latin Hypercube Sampling and insert a Sample Size of 450.Because of the input constraints will be about 110 samples be valid. • Chose the valid sample points by deleting the invalid (click on Delete) • Click OK and startthe DoE to solve thedesigns
Result and Postprocessing I • See that we have bad results in two areas • 1st: the displacement of Flansch 1 cannot be negative • We have to remove these bad designs
Deactivating unsuitable designs I • Draw a window around thedesigns you want to deactivate • Deactivate them by mark themas deactivate (context menu byclicking the right mouse button) • See the reduced design space
Deactivating unsuitable designs II • Watch for other areas of bad results • Repeat deactivating Designs in these cases. You find the other area of bad designs when you lookat the equivalent stress. • Save your modified result file to start a new postprocessing.
Postprocessing the reduced bin file • Take the reduced model to search for dominating parameters of the desired target values. • The target values for the optimization are: - Equivalent stress in the screw - Displacement of Flansch 1 and 2
Coefficients of determination • Look at the Coefficients of determination of the target values. • Check for double Parameters to reduce the model. • Dominating Parameter:Rohrstaerke_E6_2_DS
Reducing the model • You can reduce the parameters to 6 parameters by ignoring the parameters with a weak influence. • The remaining parameters are: • Rohrstaerke_E6_2_DS • Schraubenlage_E13_12_DS • Schraubenkopfstaerke_EX_32_14 • Einflusstiefe_E6_3 • Einflusstiefe2_E6_4 • Schraubendurchmesser_E13_9_DS • Now you can reduce the parameter set in a new parametrization! • Be aware, that you have to modifiy the geometry constraints in an accurate way!
Modifying the problem file • Set the unnecessary parameters as „inactive“ • Check the constraints, modify them as shown below: • Constraint 1: 18-Schraubendurchmesser_E13_9_DS • Constraint 2: 0 <= Schraubenlage_E13_12_DS-Schraubendurchmesser_E13_9_DS/2-Rohrstaerke_E6_2_DS-71 • Constraint 3: 0 <= Rohrstaerke_E6_2_DS-Schraubenlage_E13_12_DS-Schraubendurchmesser_E13_9_DS/2+89 • Constraint 4: remove
Adding the objective function • Start the parametrization again and add the objective function • Our aim is to minimize the displacement of the two flanges and minimize the equivalent stress in the screw • Insert the objective as shown below • fabs(value) provides the absolute value
Starting an optimization • Because of the input constraints you can only use the GA or EA algorithm for the optimization. • Define the optimization run. This is not pre-defined, so that you have to fill in the correct problem definition and starting script. • Set 0% to avoid the violation of input constraints. • Modify the settings for the population size (25) and the mutation rate (0.2) as shown below and start the solver.
Result monitoring and postprocessing • Best Design in this run is design Nr. 177 • Reducing of the maximum equivalent stress by about 66% • The Gap could not be reduced yet
Comparing of the designs • Basic Design:Displacement: 0.054867 mmMax. Stress in Screw: 55.239 MPa • Optimized Design:Displacement: 0.072812 Max. Stress in Screw: 18.5926 MPa
Import a design in Workbench • Re-open the Workbench Simulation • Browse for the design you want to import • Highlight „Calculate this design“ if you want to check the results
Calculated, imported design • See the changed parameters and results