1 / 13

Uncertainty Quantification and Propagation in Numerical Simulations of Flow-Structure Interactions

Uncertainty Quantification and Propagation in Numerical Simulations of Flow-Structure Interactions. Didier Lucor Laboratoire de Modélisation en Mécanique UPMC - UMR CNRS 760 Boite 162, 4 place Jussieu Tel: 33 (0)1 44 27 87 12

damia
Download Presentation

Uncertainty Quantification and Propagation in Numerical Simulations of Flow-Structure Interactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Uncertainty Quantification and Propagation in Numerical Simulations of Flow-Structure Interactions • Didier Lucor • Laboratoire de Modélisation en Mécanique UPMC - UMR CNRS 760 • Boite 162, 4 place Jussieu Tel: 33 (0)1 44 27 87 12 • 75252 Paris Cedex 05 Fax: 33 (0)1 44 27 52 59 • France email: lucor@lmm.jussieu.fr

  2. DNS of 3D turbulent flow past a rigid cylinder at Re=10000 • Re=10000 • DoF:200 Millions • Number of Processors:512 • Use of multi-level parallelism (MPI-MPI or OpenMP-MPI) Dong & Karniadakis, JFS, (2005).

  3. Exponential shear case Uniform case Linear shear case

  4. DNS-Experiments comparison of a turbulent flow past a rigid stationary cylinder Re=3900 DNS: Ma & Karniadakis, JFM, (2000). Experiments: Ong & Wallace, Experiments in Fluids (1996). Energy spectrum based on the transverse velocity component of the flow field in the wake (x/D=7).

  5. Sources of uncertainty Random inflow condition (stochastic process) • Parameters, simulation constants, material properties • Transport coefficients, physical properties • geometry • Boundary conditions, initial conditions • Physical laws, numerical schemes Random structural parameters Uncertain boundary conditions

  6. generalized Polynomial Chaos (gPC) Not limited to a Gaussian distribution! There exists a unique correspondence between the PDF of the stochastic input and the weightingfunction of the orthogonal polynomials. Inner product:

  7. Polynomials choice Uniform distribution approximation using the Gaussian/Hermite Chaos.

  8. : random space dimension : highest polynomial order gPC summary Example: : Gaussian distribution : Hermite polynomials N=2; P=2 with not limited to Gaussian distributions! Mean: Variance:

  9. σU Noisy inflow past an oscillating cylinder 0% Uncertainty at the inflow velocity boundary condition Lucor & Karniadakis, Phys. Rev. Lett. (2005). • Dramatic change in the vortices arrangement in the wake. • The shedding-mode switches from a (P+S) pattern to a (2S) mode in the presence of uncertainty. • For a given level of uncertainty, the change is more pronounced for higher Reynolds numbers. 10% Deterministic forced motion 20% 30%

  10. Instantaneous vorticity field RMS values Lucor & Karniadakis, PRL, (2005).

  11. Uncertainty in flow-structure interaction • Objectives: Uncertainty propagation and quantification in flow-structure interactions coupled phenomena. Sensitivity of the solution to the different random inputs. Stochastic response surfaces. Reliability and robustness of the structures to random perturbations. • Technical approach: Intrusive and non-intrusive use of the generalized Polynomial Chaos; Karhunen-Loève stochastic process representation. Development of efficient and accurate stochastic numerical codes DNS-gPC & LES-gPC. Large-scale parallel numerical simulations. • Applications: Different sources of uncertainty: - advection velocity (écoulement aux bords) - Source term - Initial conditions - physical properties of the structure - geometry - Boundary conditions Incompressible 2D & 3D turbulent flows in complex stationary or moving geometry. Linear & nonlinear structural models, higher Re numbers. DNS: Dong & Karniadakis, JFS, (2005).

  12. Turbulence et simulation aux grandes échelles (LES) • Objectifs: • Propager et quantifier les incertitudes dans les petites échelles (sous-maille) de l'écoulement. • Quel est l’espace engendré par un modèle sous-maille? Quelles sont les quantités statistiques les moins sensibles (les plus robustes) donc les plus fiables? • Construction de nouveaux modèles sous-maille. Etude de la sensibilité de la solution aux différents paramètres des modèles sous-maille. • Approche technique: • Utilisation intrusive ou non-intrusive des polynômes de chaos généralisés et représentation de Karhunen-Loève. • Ecriture d’un code de calcul stochastique (LES-PCg) et comparaison/validation avec un code (DNS-PCg) existant. • Calculateurs parallèles haute performance. • Applications: • Ecoulements turbulents ouverts (de type sillage) et écoulements pariétaux à haut nombre de Reynolds.

More Related