80 likes | 299 Views
Low Power Design for Real-Time Systems. Low power (energy) consumption is a key design for embedded systems Battery’s life during operation Reliability Size of the system Power-aware real-time scheduling Minimize the energy consumption while satisfying the real-time constraints.
E N D
Low Power Design for Real-Time Systems • Low power (energy) consumption is a key design for embedded systems • Battery’s life during operation • Reliability • Size of the system • Power-aware real-time scheduling • Minimize the energy consumptionwhile satisfying the real-time constraints.
Dynamic Voltage Scaling (DVS) Technique for Real-Time Task • CPU’s energy/power consumption is a convex function of the CPU’s speed, e.g. P = CV2f-> P = s3. • Slowing down CPU’s speed reduces the energy usage for CPU. • Saving energy consumption v.s. Meeting deadline. • Reducing the CPU’s speed as much as possible while meeting every task’s deadline. • A minimum constant speed is always an optimal solution (if possible). • If more than one speed are needed, a “smooth” selection is better. • For regular single instance real-time jobs with only one feasible interval, Yao designed an algorithm for computing the optimal solution.
Considering power consumption for leakage current • As VLSI technology marches towards deep submicron and nanoscale circuits operating at multi-GHz frequencies, the rapidly elevated leakage power dissipation will soon become comparable to, if not exceeding, the dynamic power consumption: • Pleak = I leak V • P = Pdyn + Pleak • A critical speed s* = s where P(s) = P’(s)s • Shut down the CPU when it is idle. • Shut-downoverhead.
RealEnergy:a New Framework and Tool to Evaluate Power-Aware Real-Time Scheduling Algorithms Intel XScale/PXA255 Module
Actual Energy Consumption Using DVS as meaured by RealEnergy
References • J. Lin and A. M. K. Cheng, “Real-time Task Assignment in Recharegable Multiprocessor Systems,” Proc. 14th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Kaohsiung, Taiwan, Aug. 2006. • J. Lin and A. M. K. Cheng, ``Real-time Task Assignment in Heterogeneous Distributed Systems with Rechargeable Batteries,'' IEEE International Conference on Advanced Information Networking and Applications (AINA), Bradford, UK, May 26-29, 2009. • J. Lin and A. M. K. Cheng, ``Power-aware scheduling for Multiple Feasible Interval Jobs,'' Proc. 15th IEEE-CS International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Beijing, China, Aug. 2009. Nominated for Best Paper Award. • J. Lin, W. Song, A. M. K. Cheng ``RealEnergy: a New Framework and a Case Study to Evaluate Power-Aware Real-Time Scheduling Algorithms ,'' to appear in ACM International Symposium on Low Power Electronics and Design (ISLPED), Austin, Texas, USA, August 18-20, 2010.