1 / 33

The First Quarterly Exam

The First Quarterly Exam. El primero examen trimestal. Question #1. For the function , find Your answer is a. Question #2. Which is the correct recursive formula for the sequence? {-2, 1, 4, 7, … } A recursive function has two parts The first term

dandre
Download Presentation

The First Quarterly Exam

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The First Quarterly Exam El primero examen trimestal

  2. Question #1 • For the function , find Your answer is a

  3. Question #2 • Which is the correct recursive formula for the sequence?{-2, 1, 4, 7, … } • A recursive function has two parts • The first term • The function, doing something to the previous term • The first term, u1 = -2 • The function adds 3 to each term, so un = un-1 + 3 • The answer is b

  4. Question #3 • Select the correct description of the sequence{-12, -17, -22, -27, -32, …} • The sequence is arithmetic, because we’re adding a -5 to each term (arithmetic = add) • The answer is b

  5. Question #4Option a • Find the sum of • Use the calculator – that’s why I got them • sum seq(function, variable, start, end, increment) • sum seq(4x + 3, x, 1, 32, 1) = 2208 • The answer is a

  6. Question #4Option b • Use the partial sum formula because you’re stubborn • Find u1 and uk • u1 = 4(1) + 3 = 7 • u32 = 4(32) + 3 = 131 • Use the first formula • The answer is still a

  7. Question #5Option A • Find the kth partial sum of the arithmetic sequence {un} with a common difference dk = 14, u1 = -1, d=6 • To use the calculator, we need a function • That’s achieved by using the explicit form • un = u1 + (n-1)(d) = -1 + (n-1)(6) = -1 + 6n – 6 = 6n – 7 • Use the calculator • sum seq(6x – 7, x, 1, 14, 1) = 532 • The answer is d

  8. Question #5Option B • Use the partial sum formula, particularly the 2nd partial sum formula. Remember your order of operation… • The answer is still d

  9. Question #6 • Which best describes the relationship between the line through E and F and the line through G and H?E = (-8, -5), F = (-5, -1) and G = (-1, 2), H = (-5, 5) • Find the slope of each line • Because the slopes are inverse reciprocals (flip the fraction, flip the sign), the two lines are perpendicular. • The answer is b

  10. Question #7 • Find an equation for the line satisfying the given conditions.y-intercept 6 and slope • You’ve got slope intercept form, so plug in the slope and the intercept • Your answer is d

  11. Question #8 • Find the common ratio for geometric sequence 10(5)n-1 • The common ratio is the number that is multiplying the function again and again • That number is 5, and I don’t know how to explain that any more simply. • Your answer is d

  12. Question #9Option A • Solve by completing the square: • x2 + 3x – 10 = 0 • Use the quadratic formula. It always works. • a = 1, b = 3, c = -10 • The answer is c

  13. Question #9Option B • Solve by completing the square: • x2 + 3x – 10 = 0 • Turns out this one can be factored • Find two numbers that multiply to get ac: -10 • That add together to get b: 3 • Those numbers are -2 and 5 • Factor • (x2 – 2x) + (5x – 10) = 0 • x(x – 2) + 5(x – 2) = 0 • (x + 5)(x – 2) = 0 • x + 5 = 0 or x – 2 = 0 • x = -5 or x = 2 • The answer is b

  14. Question #9Option C • Solve by completing the square: • x2 + 3x – 10 = 0 • Sure, complete the squareThe answer is still c

  15. Question #9Option D • Plug in for x • If both answers equal 0, you’ve got a solution • (2)2 + 3(2) – 10 = 0 • 4 + 6 – 10 = 0 • So, 2 is an answer • (-2) 2 + 3(-2) – 10 = 0 • 4 – 6 – 10 ≠ 0 • So -2 isn’t an answer • Check, 2 and -5 both work • For the last time, the answer is c

  16. Question #10 • Solve by taking the square root of both sides4(x-2)2 - 252 = 0 • Get the squared term by itself The answer is d

  17. Question #11 • Determine the nature of the roots:4x2 + 32x + 64 = 0 • Use the discriminate to determine the number of real roots • Because the discriminate equals 0, there is one real root, and the answer is b

  18. Question #12 • Solve the equation5x = 3x2 + 1 • Get everything to equal 0 and use the Quadratic Equation • The answer is d

  19. Question #13 • If {un} is an arithmetic sequence with u1=4 and u2=5.6 • Find the common difference • Subtract u1 from u2 to find d • d = 5.6 – 4 = 1.6 • Write the system as a recursive function • Recursive functions have two parts, starting point and a function that uses the previous term (Just like problem #2) • u1 = 4 and un = un-1 + 1.6 • Give the first eight terms of the sequence • Put ‘4’ into the calculator, hit enter • Put ‘Ans + 1.6’, and keep hitting enter to get the rest of the terms • 4, 5.6, 7.2, 8.8, 10.4, 12, 13.6, 15.2 • Graph the sequence • See the answer sheet, but in short. The first term (4) has an x value of 1 and a y value of 4; the second term (5.6) has an x value of 2 and a y value of 5.6, etc.

  20. Question #14 • For the geometric sequence with u1=3 and u2=12 • Find the common ratio • Divide u2 by u1 to find r • r = 12/3=4 • Write the system as a recursive function • Recursive functions have two parts, starting point and a function that uses the previous term (Just like problem #2) • u1 = 3 and un = un-1(4) • List the first four terms of the sequence • Put ‘3’ into the calculator, hit enter • Put ‘Ans • 4’, and keep hitting enter to get the rest of the terms • 3, 12, 48, 192 • Graph the sequence • See the answer sheet, but in short. The first term (3) has an x value of 1 and a y value of 3; the second term (12) has an x value of 2 and a y value of 12, etc.

  21. Question #15 • Solve the equationx2 – 6x + 7 = 0 • Use the Quadratic Equation

  22. Question #16Option A • Find the mean, median, and mode for the set of numbers:1, 21, 21, 21, 18, 23, 13, 10 • We break out the OneVar function • Store the data as a list [2nd, subtract key] • {1, 21, 21, 21, 18, 23, 13, 10}  D • Receive our data back as confirmation • OneVar [Alpha] D • is the mean (16) • Push down to get the median (19.5) • The answer is d (The mode is 21)

  23. Question #16Option B • 1, 21, 21, 21, 18, 23, 13, 10 • Rearrange the data in numerical order. The middle term(s) is/are the median • 1, 10, 13, 18, 21, 21, 21, 23 • (18 + 21)/2 = 39/2 = 19.5 • The mode is obviously 21 • The answer is still d

  24. Question #17 • Describe the shape • Recap: • Skewed left graphs have a short left side(the left is screwed) • Skewed right graphs have a short right side(the right is screwed) • Uniform graphs all have the same data(uniforms are all the same) • Symmetric graphs look like a mirror(symmetry, reflection) • The answer is a

  25. Question #18Option A • Find the population standard deviation of the data set70, 58, 70, 43, 58, 55, 58, 68 • Use the ONEVAR function again • Store the data as a list [2nd, subtract key] • {70, 58, 70, 43, 58, 55, 58, 68}  D • Receive our data back as confirmation • ONEVAR [ALPHA] D • Push down to get the population standard deviation (σx) ≈ 8.58778 ≈ 8.59 • The answer is b

  26. Question #18Option B • Data set: 70, 58, 70, 43, 58, 55, 58, 68 • Find the mean of the data set • (70 + 58 + 70 + 43 + 58 + 55 + 58 + 68) / 8 = 60 • Find the distances from the mean • Square them and add them together • 102 + 22 + 102 + 172 + 22 + 52 + 22 + 82 = 590 • For population standard distribution, take the average of the distance • 590 / 8 = 73.75 • Take the square root of that value • The answer, again, is b

  27. Question #19 • In a clinical trial, a drug used to as caused side effects in 6% of patients who took it. Three patients were selected at random. Find the probability that all had side effects. • 0.06 probability for each having side effects • P(all three having SE) = 0.063 = 0.000216 • The answer is b

  28. Question #20 • 5 yellow, 7 red, and 6 green marbles. • Two marbles are drawn. • Replacement occurs. • A random variable assigned to number of green marbles. • What is the probability that the random variable has an output of 2? • The only time you’d get a random variable of 2 is when you get 2 green marbles. • The probability of drawing a green marble is 6/18 • P(2 green) = (6/18)(6/18) = 1/9 • The answer is c

  29. Question #21 • 2 yellow, 6 red, and 5 green marbles. • Two marbles are drawn. • Replacement occurs. • Random variable assigned to number of red marbles. • Calculate the expected value of the random variable. • We need to figure out all possibilities of red marbles (2 red, 1 red & 1 non-red, 0 red) • 2 red = (6/13)(6/13) = 36/169 • 0 red = (7/13)(7/13) = 49/169 • 1 red = everything else = 1 - 36/169 - 49/169 = 84/169 • Expected value = sum of each random variable multiplied by its probability • (2)(36/169) + (1)(84/169) + (0)(49/169) = 0.92 • The answer is b

  30. Question #22 • 18 students. How many ways can the students who go first, second, and third be chosen? • Order matters, so we’re using Permutations • 18P3 = 4896 • The answer is b

  31. Question #23 • What’s not right about this picture… • Each of the lines/boxes represents 25% of the data • A is true as it spans both boxes • B is true, as the range is the max value – min value • C is liar. Only half the data is greater than 65: 1 box and the right whisker • D is true, as the left side of the box represents Q1, the median of the lower half • The answer is c

  32. Question #24 • Spin a spinner 5 times • Red = 17%; Blue = 22%; Green = 17%; Yellow = 44% • What is the probability all five will be red? • Take red probability and multiply by itself five times • (0.17)5≈ 0.000141 ≈ 0.01% • What is the probability that none of the outcomes will be yellow? • The probability of not yellow is 1 – P(yellow) • 1 – 0.44 = 0.56 • Take that probability and multiply by itself five times • (0.56)5≈ 0.0550 ≈ 5.5%

  33. Question #25 • Find the expected value of the random variable with the given probability distribution. • Multiply each outcome by its probability and add them all together • (47)(0.05) + (23)(0.06) + (79)(0.29) + (58)(0.23) + (82)(0.37) • 70.32

More Related