1 / 13

Artificial Intelligence System Designer 4GN

Artificial Intelligence System Designer 4GN ISP RAS Alexander Zhdanov Artificial Intelligence Pattern recognition Data mining Image recognition Automated reasoning Expert systems Prediction Automated control Problems solved by means of AI systems: Approaches used:

Download Presentation

Artificial Intelligence System Designer 4GN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Artificial Intelligence System Designer 4GN ISP RAS Alexander Zhdanov

  2. Artificial Intelligence • Pattern recognition • Data mining • Image recognition • Automated reasoning • Expert systems • Prediction • Automated control Problems solved by means of AI systems: Approaches used: • Artificial Neural networks • Fuzzy logic • Reinforcement learning • Stochastic approaches • Structural representation

  3. AAC Framework for AI system design • Explicitly deals with • Pattern recognition • Knowledge base formation • Prediction • Automated analysis • May be based on • Determined chaos systems • 3rd generation neural networks • Genetic algorithms • Stochastic methods • Open for other sophisticated techniques • Well-suited for: • Pattern recognition systems • Expert systems • Data mining system • Adaptive control systems

  4. AAC Framework for AI system design AAC Comparison with other AI-approaches: • Artificial neural networks - perform only patter recognition or approximation and demand a priori learning. AAC systems have abilities for self-control • Fuzzy logic systems – demand a priori formulated fuzzy rules. AAC systems deduce rules themselves and corrects them if necessary

  5. AAC Framework for AI system design For example, the AdCAS system for car suspension adaptive control could not be created simply on basis of another method: artificial NN, reinforcement learning, fuzzy logic or any another approach.

  6. AAC Framework applicability • Pattern recognition systems • Prediction, forecasting systems • Expert systems, decision making • Adaptive control systems • Highly adjustable to problem domain or context

  7. Universality of a system “Applicability of a method is inversely proportional to its universality” It is impossible to create universal control system for ANY customers and ANY problem, because its parameters have to depend on given objects • Parameters of CS, which are independent from CO • 1) The structure of the CS operation; • 2) The ways in which the CS subsystems are constructed – the recognition system, knowledge base and other subsystems; • 3) The models of the neuron-like elements of which the the CS subsystems are constructed; etc. • Parameters of CS, which dependent from CO • 1) The input and output variables and their characteristics; • 2) The rules of pattern formation which will be required for the control; • 3) The rules of knowledge formation in the knowledge base • 4) The qualitative criteria for the evaluation of the possible states of the CS, for the control quality evaluation, for the determination of the goal functions; etc.

  8. Computer Aided System Engineering • Pros • Produces highly customizable solutions • Ease of use: does not require hardcore programming skills • Adaptability • Flexibility • Development of end-user solutions • Cons (requires from developers) • High level of abstraction on analysis stage • Deep understanding of system principia • Ability to translate abstraction into concrete notions

  9. Computer model of given application Model of sensors AAC method Programming Prototype of CS Model of CO Model of actuators The software Tools CASE for design of AI systems

  10. Proposal #1: Development of CASE for design of AI systems based on AAC method Main features: • Drastically reduces time and resources required for development • Explicit AI orientation • Export/import interfaces with simulation software and with hardware • Advanced visualization and analysis techniques • Easy to use for non-experienced programmer • Makes process of AI system design more transferable • Open interfaces

  11. Control System Controlled Object Phase I. CS Sensors Sensors CO CO Actuators Actuators Environment Environment • The projection and development of the CS prototype and its testing on program models of the CO, Sensors and Actuators. (1-2 years) Phase II. CS Sensors CO Actuators Environment • The debugging of the CS prototype on real CO, sensors, actuators or their physical models. Phase III. CS • Building-in of the CS into the real CO, where the CS is implemented on real (on-board) processor. Three main phases of applied AI systems projecting for various tasks

  12. Proposal #2: AAC-based multiagent system architecture Development of multiagent system architecture based on AAC Main features of such system: • Explicitly distributed • AI-based (in sense of AAC) • Self-monitoring, Self-adaptability, Self-manageability, Self-learning • Secure • Adaptable to heterogeneous environment • Decentralized control • Flexibility • Eco-system principles based

  13. Thank you for your time Welcome to discussion

More Related