1 / 38

Biosensors

Biosensors. Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007. Outline. Introduction 4 Specific Types of Biosensors Electrochemical (DNA) Carbon nanotube BioFET Whole Cell Basic functionality Benefits/Challenges Summary References. Introduction.

Download Presentation

Biosensors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

  2. Outline • Introduction • 4 Specific Types of Biosensors • Electrochemical (DNA) • Carbon nanotube • BioFET • Whole Cell • Basic functionality • Benefits/Challenges • Summary • References

  3. Introduction • Biosensor: Incorporation of a biomolecule in order to detect something Species to be detected (analyte) Filter Recognition Layer Recognition Layer Transducer Electronics Signal Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  4. Introduction • Biosensors ~ $3B • 90% → Glucose testing • 8% - 10% increase in industry per year Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  5. Electrochemical DNA Sensors • Harnesses specificity of DNA • Simple assembly • Customizable • Vast uses for small cost Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  6. DNA Structure • DNA structures---double helix • 4 complementary bases: Adenine (A), Guanine (G), Thymine (T), and Cytosine (C) Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  7. DNA Specificity • Hydrogen bonding between base pairs • Stacking interaction between bases along axis of double-helix • Animation Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  8. Principles of DNA biosensors • Nucleic acid hybridization (Target Sequence) (Hybridization) (Stable dsDNA) ssDNA (Probe) Source: http://cswww.essex.ac.uk Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  9. E-DNA Sensor Structure “Stem-loop” s Gold electrode Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  10. E-DNA Sensor Structure Target “Stem-loop” s Gold electrode Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  11. E-DNA Sensor Structure (Open, extended) (Stem-loop) Source: Ricci et al., Langmuir,2007, 23, 6827-6834 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  12. Carbon Nanotube Biosensor Image: www.cnano-rhone-alpes.org Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  13. Carbon Nanotube Biosensor • One atom thick • One nanometer diameter • Ability to be functionalized • Electrical conductivity as high as copper, thermal conductivity as high as diamond Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  14. CNT Biosensor Structure Succinimidyl ester Source: Chen et al., 2001 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  15. CNT Uncoated vs. Coated Source: Chen et al., 2001 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  16. CNT Biosensor Signal Detection Glucose O2 Gluconic Acid H2O2 e- Source: Besteman et al., 2003 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  17. CNT Biosensor Signal Detection e- e- e- e- e- Effectively increases electrical current Source: Besteman et al., 2003 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  18. CNT Biosensor Results 160 mM 60 mM 20 mM 0 mM Source: Besteman et al., 2003 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  19. BioFET • Draws upon versatility of common electronic component (Field-Effect Transistor) • Well understood expectations/results Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  20. FET + - Drain Gate Insulator Source + + + + (Not conductive enough) (Electron Channel) - - - - - Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  21. FET + - Threshold Voltage Drain Gate Insulator Source + + + + Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  22. FET + - Drain Gate Insulator Source + + + + + + + + - - - - - - - - - - - - - Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  23. BioFET Source: Im et al., 2007 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  24. BioFET Source: Im et al., 2007 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  25. BioFET Results Gate (before) Source: Im et al., 2007 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  26. d BioFET Results Gate (w/ complete Biomolecule) Gate (after etch, w/biotin) Source: Im et al., 2007 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  27. Whole Cell Sensors Source: http://www.whatsnextnetwork.com/technology/media/cell_adhesion.jpg Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  28. Whole Cell Sensors • Harness normal genetic processes • May detect dozens of pathogens • Modifiable/customizable • Reports bioavailability • Temperature/pH sensitive • Short shelf-life Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  29. Whole Cell Sensors Source: Daunert et al., 2000 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  30. Action-Potential Biosensor Source: Tonomura et al., 2006 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  31. Action-Potential Biosensor (Side view) Source: Tonomura et al., 2006 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  32. Action-Potential Biosensor Suction Source: Tonomura et al., 2006 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  33. Action-Potential Biosensor Suction Source: Tonomura et al., 2006 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  34. Action-Potential Biosensor Source: Tonomura et al., 2006 Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  35. Summary • Use of biomolecules in sensors offers: • Extreme sensitivity • Flexibility of use • Wide array of detection • Universal application Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  36. Summary • But still maintains challenges of: • pH/Temperature sensitivity • Degradation • Repeatable use • Regardless of challenges: • Biosensors will permeate future society Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

  37. References • K McKimmie. “What’s a Biosensor, Anyway?”, Indiana Business Magazine, 2005, 49, 1:18-23. • N Zimmerman. “Chemical Sensors Market Still Dominating Sensors”, Materials Management in Health Care, 2006, 2, 54. • K Odenthal, J Gooding. “An introduction to electrochemical DNA biosensors”, Analyst, 2007, 132, 603–610. • S V Lemeshko, T Powdrill, Y Belosludtsev, M Hogan, “Oligonucleotides form a duplex with non-helical properties on a positively charged surface”, Nucleic Acids Res., 2001, 29, 3051–3058. • F Ricci, R Lai, A Heeger, K Plaxco, J Sumner. “Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor”, Langmuir,2007, 23, 6827-6834. • M Heller. “DNA Microarray Technology”, Annual Review of Biomedical Engineering, 2002, 4, 129-153. • E Boon, D Ceres, T Drummond, M Hill, J Barton, “Mutation Detection by DNA electrocatalysis at DNA-modified electrodes”, Nat. Biotechnol. 2000, 18, 1096-1100. • S Timur, U Anik, D Odaci, L Gorton, “Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes”, Electrochemistry Communications, 2007, 9, 1810-1815. • K Besteman, J Lee, F Wiertz, H Heering, C Dekker. “Enzyme-Coated Carbon Nanotubes as • Single-Molecule Biosensors”, Nano Letters, 2003, 3, 6: 727-730. • R Chen, Y Zhang, D Wang, H Dai. “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization”, J. Am. Chem. Soc., 2001, 123, 16: 3838 -3839. • K Balasubramanian, M Burghard. “Biosensors based on carbon nanotubes”, Anal. Bioanal. Chem., 2005, 385, 452-468. • Hayes & Horowitz, Student Manual for the Art of Electronics, Cambridge Univ. Press, 1989. • I Hyungsoon, H Xing-Jiu, G Bonsang, C Yang-Kyu. “A dielectric-modulated field-effect transistor for biosensing”, Nature Nanotechnology,2007, 2, 430 – 434. • D Therriault. “Filling the Gap”, Nature Nanotechnology, 2007, 2, 393 - 394. • S Daunert, GBarrett, J Feliciano, R Shetty, S Shrestha, W Smith-Spencer. “Genetically Engineered Whole-Cell Sensing Systems: Coupling Biological Recognition with Reporter Genes”, Chem. Rev. 2000, 100, 2705-2738. • T Petänen, M Romantschuk. “Measurement of bioavailability of mercury and arsenite using bacterial biosensors”, Chemosphere, 2003, 50, 409-413. • F Roberto, J Barnes, D Bruhn. “Evaluation of a GFP Reporter Gene Construct for Environmental Arsenic Detection.”, Talanta. 2002, 58, 1:181-188. • W Tonomura, R Kitazawa, T Ueyama, H Okamura, S Konishi. “Electrophysiological biosensor with Micro Channel Array for Sensing Signals from Single Cells”, IEEE Sensors, 2006, 140-143. • R Leois, J Rae. “Low-noise patch-clamp techniques”, Meth. Enzym. 1998, 293: 218-266. • [1] A Vikas, C S Pundir. “Biosensors: Future Analytical Tools”, Sensors and Transducers, 2007, 2, 935-944.

  38. Questions? Introduction E-DNA Carbon N-T BioFET Whole Cell Summary

More Related