1 / 28

Remarks to Optimization Rules for the End User Programming Language OttoVonG Opatia 8.6.2007

Remarks to Optimization Rules for the End User Programming Language OttoVonG Opatia 8.6.2007. Klaus Benecke benecke@iws.cs.uni-magdeburg.de IWS/FIN, Otto-von-Guericke-Universität Magdeburg Postfach 4120 Magdeburg, Germany 39016, Sachsen/Anhalt. 1 Aims of OttoVonG.

Download Presentation

Remarks to Optimization Rules for the End User Programming Language OttoVonG Opatia 8.6.2007

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Remarks to Optimization Rules for the End User Programming Language OttoVonGOpatia 8.6.2007 Klaus Beneckebenecke@iws.cs.uni-magdeburg.deIWS/FIN, Otto-von-Guericke-Universität MagdeburgPostfach 4120Magdeburg, Germany 39016, Sachsen/Anhalt

  2. 1 Aims of OttoVonG Universal Enduser Query Language for • Documents (XML) • Tables (databases) • Internet (of XML-Documents) • Graphics

  3. 1 Objects of OttoVonG Generating Operations • El_tab • Tag0 • Tuple_t • Coll_t • Alternate_t

  4. 2 Counter Examples for Optimization Rules (1) << M( A, L( B, C)):: 1 2 3 4 5 >> (Tabment T0) (a) B=4(B::C=3(T0) ) B::C=3(B=4(T0))

  5. 2 Counter Examples for Optimization Rules (2) << M( A, L( B, C)):: 1 2 3 4 5 >> (Tabment T0) (b) B::pos(B)=1 (B::B=4(T0))  B::B=4(B::pos(B)=1(T0))

  6. 2 Counter Examples for Optimization Rules (3) << M( A, L( B, C)):: 1 2 3 4 5 >> (Tabment T0) (c) B::C=3(L(C)[-1]=5(T0))  L(C)[-1]=5(B::C=3(T0))

  7. 2 Attributes • name • C(name) (C collection symbol; M; B; L) • pos(name) • Attribute[i] (i: integer)

  8. 2 Nonrecursive Example DTD • NAME TYPOS • TABMENT L(A?, B, M(C, D)) • C E, F • D M(H) • F M(G) • A,... TEXT

  9. 2 Example Extended Tree L   | (A: TEXT)?, (B: TEXT), M   | (C: (E: TEXT), (F: M)), (D: M)   | | (G: TEXT) (H: TEXT)

  10. 2 Condition Types (1) • Simple condition name1:: cond1, where cond1 contains only names and deepest name of cond1 is as deep as name1 example: G:: G=B counter example1: E:: G=B counter example2: n:: G=H

  11. 2 Condition Types (2) • Relational condition name1::: cond1, where name1:: cond1 is simple example: G::: G=B abbreviates: G:: G=B E:: G=B A:: G=B

  12. 3 Commuting Conditions(1) • EMPS: M(ENO, NAME, FIRSTNAME, LOCATION, SALARY, SEX, PATENTCNT, INSTITUTE, M(HOBBY), M(PROJECT, TIME)) • Query 1: not commuting conditions aus EMPS gib B-(SALARY, NAME, LOCATION, SEX) mit LOCATION=”Magdeburg” ## simple condition mit pos(SALARY) < 50 ## position selecting condition

  13. 3 Commuting Conditions(2) • EMPS: M(ENO, NAME, FIRSTNAME, LOCATION, SALARY, SEX, PATENTCNT, INSTITUTE, M(HOBBY), M(PROJECT, TIME)) • Query 2: commuting conditions aus EMPS mit PROJECT:: TIME > 10 # simple condition mit LOCATION=”Magdeburg” # simple condition

  14. 3 Commuting Conditions (3) • cond2(cond1(tab)) = cond1(cond2(tab)), • if one of the following conditions is satisfied: 1 cond1 and cond2 are simple. 2 one condition does not select in a fix level of the other 3 cond1 and cond2 arerelational. 4 cond1 and cond2 refer to the same level and are not position selecting.

  15. 4 Absorption of a Condition • Query 3: aus EMPS mit PROJECT:: PROJECT in L(“otto” ”SQL” ”XML”) mit TIME > 10 # existential condition aus EMPS mit TIME>10 i PROJECT in L(“otto” ”SQL” ”XML”) mit PROJECT:: PROJECT in L(“otto” ”SQL” ”XML”)

  16. 5 Smuggling a Condition (1) • Query 4: aus EMPS mit LOCATION = ”Magdeburg” mit PROJECT:: TIME > 10 gib M(PROJECT, M(NAME, ENO, TIME)) aus EMPS mit LOCATION=”Magdeburg” mit PROJECT:: TIME>10 mit PROJECT = PROJECT gib M(PROJECT, M(NAME, ENO, TIME))

  17. 5 Smuggling a Condition (2) • Query 4 continued: aus EMPS mit LOCATION=”Magdeburg” mit TIME > 10 mit PROJECT:: TIME>10 gib M(PROJECT, M(NAME, ENO, TIME)) aus EMPS mit LOCATION=”Magdeburg” mit PROJECT ::: TIME>10 gib M(PROJECT, M(NAME, ENO, TIME))

  18. 6 Smuggling the Forget-Operation  (1) • The forget-operation is a relatively simple operation, which is similar to the relational projection, but which differs from projection in 3 points. • The argument of forget is not a list of attributes, which remain in the resulting structure, but the list of attributes, which are to omit. • forget does not omit duplicates in sets. • forget can be used also in recursive structures

  19. 6 Smuggling the Forget-Operation  (2) Query 5 a: aus EMPS mit LOCATION = ”Magdeburg” gib M(INSTITUTE, B(NAME, SALARY)) aus EMPS mit LOCATION = ”Magdeburg” forget HOBBY, PROJECT, TIME, SEX,… gib M(INSTITUTE, B(NAME, SALARY))

  20. 6 Smuggling the Forget-Operation  (3) Query 5 b: aus EMPS gib M(NAME, HOBBY, PROJECT) aus EMPS forget NAME, HOBBY, PROJECT, TIME, SEX,… gib M(NAME, HOBBY, PROJECT)

  21. 7 Rules with the Extension Operation ext ()(1) • Query 7: a hierarchical join FACULTIES: M(FAC, DEAN, FACBUDGET) INSTITUTES: M(INSTI, MGR, BUDGET, FAC) ext F := FACULTIES ext G := INSTITUTES at FACBUDGET mit INSTI:: F/FAC = G/FAC mit FACBUDGET > 100000 mit INSTI:: BUDGET > 10000

  22. 7 Rules with the Extension Operation ext ()(2) • Query 7: a hierarchical join of aus INSTITUTES mit BUDGET > 10000 =: $instis aus F:=FACULTIES mit FACBUDGET > 100000 ext G := $insts at FACBUDGET mit INSTI:: F/FAC = G/FAC

  23. 7 Rules with the Extension Operation ext ()(3) sel-ext1 cond(assi(tab)) = assi (cond (tab)), this rule holds, if all operations are applicable, and the extension does not introduce a name, which is used in the condition. Counter example for sel-ext1: << L(A, B):: 1 2>> ext B := 3 at B mit B = 3

  24. 7 Rules with the Extension Operation ext ()(4) sel-ext2 cond(X:=tab2 at Y(tab1))=X:= ( cond (tab2)) at Y(tab1), here is presupposed that all operations are applicable, that cond is a ::-condition and does not contain a name from tab1.

  25. 7 Rules with the Extension Operation ext ()(5) ext-ext assi1(assi2(tab)) = assi2(assi1(tab)), this rule holds, if right and left hand side are defined and assi1 and assi2 have no common names or tabment names. Counter example for ext-ext (without importance): ext A := 1 ext C := 3 at A ext B := 2 at A # result type: A, B, C

  26. 7 Rules with the Extension Operation ext ()(6) Counter example for ext-ext (without importance): ext A := 1 ext B := 2 at A ext A := 3 at A # result type: (A, A, B) but ext A := 1 ext A := 3 at A ext B := 2 at A # result type: (A, B, A, B)

  27. Summary • We have powerful operations, which are implemented for XML-documents and TAB-files; • this implementation must be improved and generalized in several points • include optimization strategies; • generalize it to databases and Intranet

  28. Thank you for attention

More Related