520 likes | 1.03k Views
MENANAM POHON UNTUK MEMANEN AIR HUJAN AIR HUJAN. Soemarno - psdl ppsub 2013. Profil pohon dalam menangkap air hujan dan energi matahari. www.icsu-scope.org/.../scope51/chapter06.html A model illustrating fluxes of sulphur in a forest ecosystem .
E N D
MENANAM POHON UNTUKMEMANEN AIR HUJANAIR HUJAN Soemarno - psdlppsub2013
www.icsu-scope.org/.../scope51/chapter06.html A model illustrating fluxes of sulphur in a forest ecosystem
Schematic illustration of the biogeochemical processes of importance in long-term research of a watershed (Swank, 1986).
Sumber: www.aracruz.com.br/show.do?menu=true&id=943... Vegetasi pohon mengamankan tebing curam dari bahaya longsor
Sumber: www.waterbucket.ca/rm/?sid=33&id=271&type=single Tajuk pohon menangkap sejumlah air hujan dan emenguapkannya kembali ke udara
Four-Way Collaboration The Water Balance Model includes a tree canopy module so that the rainfall interception benefits of trees in the urban environment can be quantified. To populate the module with local data, a four-way collaboration has been established under the umbrella of the Inter-Governmental Partnership (IGP) that developed the Water Balance Model. The Greater Vancouver Regional District and Ministry of Community Services are providing funding, and the University of British Columbia and District of North Vancouver are making in-kind contributions in carrying out the applied research project. The District of North Vancouver is acting on behalf of the IGP in leading this on-the-ground initiative.
Tree canopy interception is the process of storing precipitation temporally in the canopy and releasing it slowly to the ground and back to the atmosphere. It is an important component of the water balance, easily accounting for up to 35% of gross annual precipitation. Removing trees will in general decrease interception and thus increase annual runoff and rainwater runoff. Vegetation also reduces rainfall intensity due to the temporal storage effect.
www.uwsp.edu/geo/faculty/lemke/geog101/lectur... SOIL WATER Infiltration & percolation; permeability; Porosity Zone of aeration: soil water storage; plant uptake & transpirationevaporation; Throughflow; Water table Zone of saturation: groundwater flow; aquifer.
Sumber: www.uwsp.edu/geo/faculty/lemke/geog101/lectur..... HYDROLOGIC CYCLE & WATER BUDGETS What happens to precipitation? Water budget: local scale examination of the gains, uses, and losses of water
Vegetasi Pohon memperbaiki neraca-air bentang lahan • WATER BALANCE • Gains: precipitation • Soil moisture storage Losses: utilization and evapotranspiration; Actual evapotranspiration (AE) ; Potential evapotranspiration (PE). • Simple water balance: • Moisture abundant environments : P > PE and therefore AE = PE Moisture limited environments: P < PE and therefore AE < PE • Seasonal moisture environments.
www.ecologyandsociety.org/vol3/iss2/art5/ The hydrological cycle, showing the repartitioning of rainfall into vapor and liquid freshwater flow (modified from Jansson et al. 1999).
INVISIBLE GREEN WATER VAPOR AND VISIBLE BLUE LIQUID WATER It is distinguished between water vapor flows and liquid water flows. In the literature on water and food production, water vapor and liquid water are sometimes called green water and blue water, respectively . Both concepts provide useful tools for the analysis of local, regional, and global flows in the hydrologic cycle. Liquid (blue) water flow is the total runoff originating from the partitioning of precipitation at the land surface (forming surface runoff ) and the partitioning of soil water (forming groundwater recharge) . Water vapor (green) is the return flow of water to the atmosphere as evapotranspiration (ET), which includes transpiration by vegetation and evaporation from soil, lakes, and water intercepted by canopy surfaces . We regard ET as the result of the work of the whole ecosystem, including the resilience it needs for securing the generation of ecosystem services in the long run.
https://www.uwsp.edu/natres/nres743/T1Eco2.htm Nutrient cycle We already know trees rely on nutrients like phosphorous and nitrogen for healthy growth and reproduction. Throughout a trees life stages, they constantly use and return nutrients to the soil. Nutrient cycles regularly transform nutrients from the non-living environment (air, soil, water, rocks) to the living environment and then back again
SIKLUS AIR Water is constantly cycling. The water cycle collects, purifies, and distributes the world�s water. Without the water cycle, life on earth would be impossible. Trees and plants are part of this water cycle. Transpiration is the controlled evaporation process by which plants lose H2O through the pores in their leaf structures. A full-grown tree can transpire hundreds of gallons of water a day during growing season. https://www.uwsp.edu/natres/nres743/T1Eco2.htm
Sumber: phytosphere.com/vtf/treewater.htm Water deeply rather than frequently. Because most tree roots are found in the upper 18 - 24 inches of the soil, this is the zone that should be wetted up in each irrigation cycle. Each deep irrigation will meet a tree's water needs for between 10 days to 4 weeks during the hottest part of the summer, depending on the tree species and soil type.
www.cmhc-schl.gc.ca/en/co/maho/la/la_003.cfm Trees require water for many biological functions, but the function requiring the greatest quantity of water is transpiration . Transpiration is the movement of water vapour from the leaves of plants to the atmosphere. The soil in which trees grow is the reservoir from which tree roots draw water.
Sumber: www.cmhc-schl.gc.ca/en/co/maho/la/la_003.cfm As a general rule of thumb, management of trees near buildings in sensitive clay soils should begin no later than when the height of the tree is equal to the horizontal distance of the tree to the building .
www.flemings.com.au/treefacts_environmental.asp Tree Facts - Environmental Benefits Trees intercept and slow storm water, decreasing the likelihood of flooding and erosion, and improving water quality Large trees have a greater benefit in terms of reducing pollution than small trees Trees, shrubs, hedges and grasses have a positive effect on the environment by the transpiration of water and the emission of oxygen by photosynthesis. Plantings around buildings are a proven method of reducing the demand for artificial heating and cooling with a resultant, and important, lower use of fossil fuels. Greenery provides ‘white noise’ reducing the effects of man-made sounds .
Vegetasi pohon untuk pengisian air-tanah (groundwater) Air hujan yang jatuh ke tanah tidak seluruhnya langsung mengalir sebagai air permukaan, tetapi ada yang terserap oleh tanah.Peresapan air ke dalam tanah pada umumnya terjadi melalui dua tahapan, yaitu infiltrasi dan perkolasi. Infiltrasi adalah gerakan air menembus permukaan tanah masuk ke dalam tanah. Perkolasi adalah proses penyaringan air melalui pori-pori halus tanah sehingga air dapat meresap ke dalam tanah.
Vegetasi pohon membantu meresapkan air hujan ke dalam tanah Kuantitas air yang mampu diserap tanah sangat tergantung beberapa faktor, yaitu: jumlah air hujan, kondisi fisik tanah seperti bobot isi, infiltrasi, porositas dan struktur tanah, jumlah tumbuh-tumbuhan serta lapisan yang tidak dapat ditembus oleh air. Terbentuknya sumber-sumber air di alam mengalami serangkaian proses. Air hujan jatuh ke tanah kemudian meresap ke dalam tanah. Sebelum mencapai jenuh, air masih dapat diserap oleh tanah. Sampai di kedalaman tertentu, air tersebut tertahan oleh lapisan batu-batuan (lapisan kedap air), yang membendung air sehingga tidak terus meresap ke bawah sehingga membentuk air tanah. Jika telah mengalami jenuh, air yang jatuh ke permukaan tanah akan dialirkan sebagai air permukaan.
Tekstur tanah menentukan kemampuannya meresapkan air hujan Secara mudah ilfiltrasi digambarkan seperti disebalah ini. Kalau tanahnya berbutir kasar dan berpori-pori bagus, maka air akan terserap. Ketika air hujan menjatuhi tanah lanau yg lebih halus, maka kapasitas ilfiltrasinya berkurang banyak. Demikian juga ketika air hujan turun tepat diatas lempung, ya lebih sulit lagi terserap.
www.tanindo.com/abdi18/hal1101.htm Saat terjadinya hujan, air dapat masuk ke dalam tanah (infiltrasi) atau mengalir di permukaan tanah (limpasan permukaan / surface run-off). Air dalam tanah yang terikat oleh pori-pori dan mineral tanah, ada yang dapat dimanfaatkan oleh tanaman sebagai air tersedia, menguap dari permukaan tanah atau mengalir di permukaan atau ke dalam tanah (perkolasi), dan tersimpan dalam tanah sebagai air tanah.
Telah diketahui bahwa Konsep daur hidrologi DAS menjelaskan bahwa air hujan langsung sampai ke permukaan tanah untuk kemudian terbagi menjadi air larian, evaporasi dan air infiltrasi, yang kemudian akan mengalir ke sungai sebagai debit aliran.
Laju in filtrasi air hujan ke dalam tanah menurun dengan waktu Deskripsi Singkat Infiltrasi dari segi hidrologi penting, karena hal ini menandai peralihan dari air permukaan yang bergerak cepat ke air tanah yang bergerak lambat dan air tanah. Kapasitas infiltrasi suatu tanah dipengaruhi oleh sifat-sifat fisiknya dan derajat kemampatannya, kandungan air dan permebilitas lapisan bawah permukaan, nisbi air, dan iklim mikro tanah. Air yang berinfiltrasi pada sutu tanah hutan karena pengaruh gravitasi dan daya tarik kapiler atau disebabkan juga oleh tekanan dari pukulan air hujan pada permukaan tanah.
Sumber: suwitogeografi.blogspot.com/2008_11_08_archiv... Sirkulasi air yang berpola siklus itu tidak pernah berhenti dari atmosfir ke bumi dan kembali ke atmosfir melalui kondensasi, presipitasi, evaporasi, dan transpirasi.Pemanasan air samudera oleh sinar matahari merupakan kunci proses siklus hidrologi tersebut dapat berjalan secara kontinu. Air berevaporasi, kemudian jatuh sebagai presipitasi dalam bentuk hujan, salju, hujan batu, hujan es dan salju (sleet), hujan gerimis atau kabut. Pada perjalanan menuju bumi beberapa presipitasi dapat berevaporasi kembali ke atas atau langsung jatuh yang kemudian diintersepsi oleh tanaman sebelum mencapai tanah. Setelah mencapai tanah, siklus hidrologi terus bergerak secara kontinu dalam tiga cara diantaranya melaui kondensasi, presipitasi, evaporasi dan transpirasi.
A number of management options have been tried to conserve water in the soil, improve structural stability and increase productivity. The available management options can be grouped into three categories: a. Tillage based systems b. Organic systems c. Biological systems
Sumber: alonashwjis.blogspot.com/2009/11/water-cycle.html Precipitation rains water onto the ground, after that it starts to sink in the ground that is called infiltration.
INFILTRASI - PERKOLASI Infiltrasi/Perkolasi ke dalam tanah Adalah Air bergerak ke dalam tanah melalui celah-celah dan pori-pori tanah dan batuan menuju muka air tanah. Air dapat bergerak akibat aksi kapiler atau air dapat bergerak secara vertikal atau horizontal dibawah permukaan tanah hingga air tersebut memasuki kembali sistem air permukaan
LENGAS TANAH Air tanah merupakan air yang mengisi rongga-rongga batuan di bawah permukaan tanah pada zone jenuh air. Kondisi air tanah sangat beragam dan pada musim tertentu akan mengalami perubahan dan faktor tersebut juga merupakan faktor cuaca dan iklim serta faktor radiasi terestrial. Radiasi yang masuk pada tanah pada musim hujan dan musim kering akan sangat berbeda dan suhu yang terjadi juga akan mengalami perubahana dengan daya serap tanah akan berbeda.
Sumber: kangheru.multiply.com/journal/item/5 Sebagian dari air tanah dihisap oleh tumbuh-tumbuhan melalui daun-daunan lalu menguapkan airnya ke udara (transpiration). Air yang mengalir di atas permukaan menuju sungai kemungkinan tertahan di kolam, selokan dan sebagainya (surface detention), ada juga yang sementara tersimpan di danau, tetapi kemudian menguap atau sebaliknya sebagian air mengalir di atas permukaan tanah melalui parit, sungai, hingga menuju ke laut ( surface run off ), sebagian lagi infiltrasi ke dasar danau-danau dan bergabung di dalam tanah sebagi air tanah yang pada akhirnya ke luar sebagi mata air.
AIR TANAH Air tanah adalah air yang terdapat dalam pori-pori tanah atau pada celah-celah batuan. Air tanah terbentuk dari air hujan. Pada saat turun hujan, sebagian titik-titik air meresap ke dalam tanah (infiltrasi). Air hujan yang masuk itu yang menjadi adangan air tanah. Volume air yang meresap ke dalam tanah tergantung pada jenis lapisan batuannya. Berdasarkan kenyataan tersebut terdapat pula dua jenis batuan utama, yaitu lapisan kedap (impermiable) dan lapisan tanah tidak kedap air (permeable) Kadar pori lapisan kedap atau tak tembus air sangat kecil, sehingga kemampuan untuk meneruskan air juga kecil. Contoh lapisan kedap, yaitu geluh, napal, dan lempung. Sedangkan kadar pori lapisan tak kedap air atau tembus air cukup besar. Oleh karena itu, kemampuan untuk meneruskan air juga besar. Contoh lapisan tembus air, yaitu pasir, padas, krikil dan kapur. Kita akan lihat bersama gambar lapisan kedap dan lapisan tak kedap pada air tanah di halaman berikutnya
www.aboutcivil.com/hydrology.html Water Balance Components Inflow: Precipitation Import defined as water channeled into a given area. Groundwater inflow from adjoining areas. Outflow: Surface runoff outflow Export defined as water channeled out of the same area. Evaporation Transpiration Change in Storage: This occurs as change in: Groundwater Soil moisture Surface reservoir water and depression storage Detention Storage
Interception, Stemflow, Canopy Drip, and Throughfall Vegetation often modifies the intensity and distribution of precipitation falling on and through its leaves and woody structures. The most obvious effect plants have on falling precipitation is interception. Interception can be technically defined as the capture of precipitation by the plant canopy and its subsequent return to the atmosphere through evaporation or sublimation. The amount of precipitation intercepted by plants varies with leaf type, canopy architecture, wind speed, available radiation, temperature, and the humidity of the atmosphere. http://www.physicalgeography.net/fundamentals/8k.html
Interception, Stemflow, Canopy Drip, and Throughfall Vegetation can intercept up to 50% of the rain that falls on its leaves. The leaves of deciduous trees commonly intercept anywhere from 20 to 30% of the falling rain. Water dripping off leaves to the ground surface is technically called leaf drip. http://www.physicalgeography.net/fundamentals/8k.html
Interception, Stemflow, Canopy Drip, and Throughfall Precipitation that is not intercepted can be influenced by the following processes http://www.physicalgeography.net/fundamentals/8k.html
Interception, Stemflow, Canopy Drip, and Throughfall Stemflow - is the process that directs precipitation down plant branches and stems. The redirection of water by this process causes the ground area around the plant's stem to receive additional moisture. The amount of stemflow is determined by leaf shape and stem and branch architecture. In general, deciduous trees have more stemflow than coniferous vegetation. Canopy drip - some plants have an architecture that directs rainfall or snowfall along the edge of the plant canopy. This is especially true of coniferous vegetation. On the ground, canopy drip creates areas with higher moisture content that are located in a narrow band at the edge of the plant canopy. Throughfall - describes the process of precipitation passing through the plant canopy . This process is controlled by factors like: plant leaf and stem density, type of the precipitation, intensity of the precipitation, and duration of the precipitation event. The amount of precipitation passing through varies greatly with vegetation type. http://www.physicalgeography.net/fundamentals/8k.html
Interception (water) Interception refers to precipitation that does not reach the soil, but is instead intercepted by the leaves and branches of plants and the forest floor. It occurs in the canopy (i.e. canopy interception), and in the forest floor or litter layer (i.e. forest floor interception). Because of evaporation, interception of liquid water generally leads to loss of that precipitation for the drainage basin, except for cases such as fog interception. en.wikipedia.org/wiki/Interception_(water)
Interception (water) en.wikipedia.org/wiki/Interception_(water)
Canopy interception. Canopy interception is the rainfall that is intercepted by the canopy of a tree and successively evaporates from the leaves. Precipitation that is not intercepted will fall as throughfall or stemflow on the forest floor. Many methods exist to measure canopy interception. The most often used method is by measuring rainfall above the canopy and subtract throughfall and stem flow (e.g., Helvey and Patric [1965]. However, the problem with this method is that the canopy is not homogeneous, which causes difficulty in obtaining representative throughfall data. Another method that tried to avoid this problem is applied by e.g., Shuttleworth et al. [1984], Calder et al. [1986],[and Calder [1990]. They covered the forest floor with plastic sheets and collected the throughfall. The disadvantage of this method is that it is not suitable for long periods, because in the end the trees will dry due to water shortage, and the method is also not applicable for snow events. The method by Hancock and Crowther [1979] avoided these problems, by making use of the cantilever effect of branches. If leaves on a branch hold water, it becomes more heavy and will bend. By measuring the displacement, it is possible to determine the amount intercepted water. en.wikipedia.org/wiki/Interception_(water)
Throughfall In Hydrology, throughfall is the process which describes how wet leaves shed excess water onto the ground surface. These drops have an erosive power because they are larger than rain drops, however, if they travel a shorter distance their erosive power is reduced. In the case of a high canopy, higher than what is required for the drops to reach terminal velocity, about 8 metres, the erosive power is increased. Rates of throughfall are higher in areas of forest where the leaves are broad-leaved. This is because the flat leaves allow water to collect. Drip-tips also facilitate throughfall. Rates of throughfall are lower in coniferous forests as conifers can only hold individual droplets of water on their needles. http://en.wikipedia.org/wiki/Throughfall
Stemflow In hydrology, stemflow is the flow of intercepted water down the trunk or stem of a plant. Stemflow, along with throughfall, are responsible for the transferral of precipitation and nutrients from the canopy to the soil. In tropical rainforests, where this kind of flow can be substantial, erosion gullies can form at the base of the trunk. However, in more temperate climates stemflow levels are low and have little erosionalpower http://en.wikipedia.org/wiki/Stemflow
Stemflow The primary meteorological characteristics of a rainfall event that influence stemflow are: Rainfall continuity – the more frequent and extended are the gaps during the event where no rainfall occurs, the higher the likelihood that potential stemflow volume is lost to evapotranspiration; this is also governed by air temperature, relative humidity and most significantly, wind speed Rainfall intensity – the amount of total stemflow is diminished when the amount of rain in a given period surpasses the capacity of the flow paths Rain angle – stemflow generally starts earlier when rainfall is more horizontal; this is more of a determinant in an open forest with a lesser degree of crown closure .
Stemflow The species of the tree affects the amount of timing and stemflow. The particular morphological characteristics that are key factors are: Crown size – stemflow potential is greater as crown size relative to the diameter at breast height increases Leaf shape/orientation – leaves which are concave and elevated horizontally above the petiole are able to contribute to stemflow Branch angle – stemflow potential heightens as the angle of the branches and twigs increases Flow path obstructions – abnormalities on the flow path, such as detached pieces of bark or scars, on the underside of the branch can divert water from stemflow and become a component in throughfall Bark – stemflow is affected by the degree of absorptive ability and smoothness of the bark alongside the branch and stem http://en.wikipedia.org/wiki/Stemflow
Stemflow Stand Characteristics In addition to the effects of individual tree species, the overall structure of the forest stand also influences the amount of stemflow that will ultimately occur, these factors are: Species composition – the total stemflow for the stand is determined by the contributions of individuals and their species-specific traits Stand density – morphological characteristics such as branch angle and thickness are largely determined by the amount of density of competing trees in the stand Canopy structure – individuals located in the understory in a stand with multiple vertically-stratified stories will have a lessened amount of total stemflow due to the interception of dominant and codominant individuals http://en.wikipedia.org/wiki/Stemflow
Stemflow Other Seasonality – in the case of deciduous or mixed forests, stemflow rates are slightly higher in the dormant season when no leaves are present and evapotranspiration is reduced; this effect becomes more pronounced as the stem diameter increases Diurnality – variations in branch weight influence the amount of stemflow; branches are heavier in the morning (with dew) and lighter in the afternoon http://en.wikipedia.org/wiki/Stemflow