1 / 32

Pricing Maturity Guarantee with Dynamic Living Benefit

Pricing Maturity Guarantee with Dynamic Living Benefit. 숭실대학교 정보통계 보험수리학과 고방원 bko@ssu.ac.kr. I-1. Dynamic Fund Protection. 풋옵션을 업그레이드한 보증유형 (A Strengthened Version of Put Option) 계약기간 동안 펀드 계좌의 금액이 보증수준 K 이하로 떨어지지 않도록 보증 펀드 계좌의 금액이 K 이하가 되면 보증 판매자는 적당한 금액을 즉시 펀드에 추가하도록 설계

danyl
Download Presentation

Pricing Maturity Guarantee with Dynamic Living Benefit

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pricing Maturity Guarantee with Dynamic Living Benefit • 숭실대학교 • 정보통계 보험수리학과 • 고방원 • bko@ssu.ac.kr

  2. I-1.Dynamic Fund Protection • 풋옵션을 업그레이드한 보증유형 (A Strengthened Version of Put Option) • 계약기간 동안 펀드 계좌의 금액이 보증수준 K이하로 떨어지지 않도록 보증 • 펀드 계좌의 금액이 K이하가 되면 보증 판매자는 적당한 금액을 즉시 펀드에 추가하도록 설계 • 흔히 Reset Guarantee라 불림

  3. I-2.Dynamic Fund Protection • F(t) : 시간 t에서의 unprotected펀드계좌의 잔고 • 시간 t에서의 DFP펀드계좌의 잔고 F(0) Protection Level K F(t) Time t

  4. I-3.Dynamic Fund Protection • H. Gerber & E. S. W. Shiu(1998, 1999) • - Dynamic fund protection 도입 • - Perpetual protection • - Ruin theory approach • H. Gerber &G. Pafumi (2000) • - A closed form expression for finite time protection • - Geometric Brownian motion • J. Imai & P. P. Boyle (2001), H-K. Fung & L. K. Li (2003) • - CEV (Constant Elasticity of Variance) process • - Discretely monitored protection • - Numerical approach • H. Gerber & E. S. W. Shiu (2003) • - Dynamic fund protection with stochastic barrier • - Optimal exercise strategy

  5. I-4.Dynamic Fund Protection • H. Gerber &G. Pafumi (2000)’s Assumption • Under Black Sholes Framework, assume • , W(t): Standard B.M. & F(0) ≥ K • All dividends are reinvested. • No transaction costs, no arbitrage opportunity etc. • The main idea of pricing DFP is the relationship between F(t) and such that • If drops to K, just enough money will be added so that does not fall below K.

  6. I-5.Dynamic Fund Protection • More precisely, • Why? • Consider as the number of fund units. • Note that n(0) = 1 & n(t) is nondecreasing. • The equal sign is chosen to minimize the guarantee cost. • See Gerber & Shiu (2003).

  7. I-6.Dynamic Fund Protection • An interpretation of the process • Consider when • After simple algebra, • By Graversen and Shiryaev (2000), we recognize as • a reflecting Brownian motion with drift = μ, volatility = σ,started at

  8. I-7.Dynamic Fund Protection • A useful result about a reflecting B. M. with drift from Graversen and Shiryaev (2000) • For any • where satisfies the stochastic differential equation • Sometimes, |μt + W(t)| is called a reflecting B. M. with drift.

  9. I-8.Dynamic Fund Protection 0 0 t t

  10. I-9.Dynamic Fund Protection • For a reflecting B. M. with drift, an explicit expression of the transition density is available. • See Cox & Miller (1965) for the derivation. • Let denote the probability that a reflecting B.M. started at will be observed in the interval between x and • x + dx after time T.

  11. I-10.Dynamic Fund Protection • Pricing formula for DFP – Gerber & Pafumi (2000) • By the fundamental theorem of asset pricing, • And, • After some tedious calculation, one may obtain the following formula:

  12. I-11.Dynamic Fund Protection • Pricing formula for DFP – Gerber & Pafumi (2000)

  13. I-12.Dynamic Fund Protection • Esscher Transform • Discussion paper by Y-C. Huang and E. S. W. Shiu (2000, NAAJ) derives the pricing formula by using the reflection principleand the method of EsscherTransforms.

  14. I-13.Dynamic Fund Protection • Numerical Illustration – Table 3 from Gerber & Pafumi (2000) • When F(0) = 100, T = 1, σ = 0.2, r = 0.04 • Interesting Fact • One may verify that

  15. II-1.Maturity Guarantee with DLB • Maturity Guarantee with Dynamic Living Benefit의 제안 • - 펀드의 잔고가 미리 정한 일정 수준 (B)을 넘어가면 그 초과액을 고객에게 배당금과 같은 형태로 바로 지급하고 만약 만기일에 펀드잔고가 보장수준 (K) 이하로 떨어지면 부족한 부분을 보장 • Maturity Guarantee with Dynamic Living Benefit의 제안 배경 • 변액연금에서GLB (Guaranteed Living Benefit) 상품인 GMWB, GMIB, GMAB의 선택비율이 높음 • Dynamic Fund Protection의 쌍대 (Dual) 문제로 명시적 가격 결정공식 유도가 가능 • B와 K를 동시에 조정,Dynamic Fund Protection보다 Cheap

  16. II-2.Maturity Guarantee with DLB DLB payment level B F(0) Protection Level K Deficit covered by protection issuer

  17. II-3.Maturity Guarantee with DLB • F(t) : 시간 t에서의 펀드계좌의 잔고 • 시간 t에서의 DLB를 지급하는펀드계좌의 잔고 • F(t)와 의 관계식 • 이 성립함

  18. II-4.Maturity Guarantee with DLB • Under the same framework with Gerber and Pafumi (2000), • 0 < K≤ F(0) = 1 ≤ B • Denote k = lnK, b = lnB (k≤ 0 ≤b) • VL(B, T): time-0 value of the aggregate DLB payments • VP(K, B, T): time-0 value of the maturity guarantee with payoff • 6. Investor pays 1 + VP(K, B, T) at the beginning of the contract.

  19. II-5.Maturity Guarantee with DLB • Similarly in DFP, • Thus, the process is a reflecting B. M. started at bwith drift (– μ), volatility σ, and reflecting barrier at 0. • The pricing formulas for VL(B, T) and VP(K, B, T) can be found by using the transition density.

  20. II-6.Maturity Guarantee with DLB • VL 공식 • By the fundamental theorem of asset pricing, • 여기서, Q는 Equivalent Martingale Measure, 은 drift가 반대부호

  21. II-7.Maturity Guarantee with DLB • VP 공식

  22. II-8.Maturity Guarantee with DLB • In the derivation of the pricing formulas, we have used two extensions from Gerber and Pafumi (2000, NAAJ): • Similarly with DFP, • Because VP ≥ BSP, the sum of the last terms should always be positive.

  23. II-9.Maturity Guarantee with DLB • The pricing formulas can be derived by using the method of Esscher Transforms. • The pricing formulas can be easily extended to the case with exponentially varying barriers.

  24. II-10.Maturity Guarantee with DLB • Numerical Illustration – 1 (r = 5%, σ = 20%) VL(B, T) 1.0 0.8 : B = 1.0 :B = 1.5 : B = 2.0 : B = 2.5 0.6 0.4 0.2 0 20 40 60 80 Maturity (Years)

  25. II-11.Maturity Guarantee with DLB • Numerical Illustration – 2 (r = 5%, σ = 20%) VP(K, B, T) 0.10 K = 1.0 0.08 K = 0.9 0.06 K = 0.8 0.04 K = 0.7 0.02 K = 0.6 0 Maturity (Years) 20 40 60 80

  26. II-12.Maturity Guarantee with DLB • Numerical Illustration – 3 (r = 5%, σ = 20%) • Table.VP(K, B, T)와 DFP의 가격비교

  27. II-13.Maturity Guarantee with DLB • Numerical Illustration – 4 (r = 5%, σ = 20%) • VP(K, B, T) 와 European Put Price의 가격비 B = 1.0 3 B = 1.1 B = 1.2 2 : K = 1.0 :K = 0.9 : K = 0.8 1 Maturity (Years) 0 4 8 12 16

  28. II-14.Maturity Guarantee with DLB • Asymptotic Result • By the asymptotic formula in Abramowitz and Stegun (1972), it can be shown that for 0 < K≤ 1,

  29. II-15.Maturity Guarantee with DLB • Numerical Illustration – 5 (r = 5%, σ = 20%) 0.4 VL(B, T = 5) 0.3 0.2 K = 1.0 Break-even if B = 2.01 K = 0.9 0.1 K = 0.8 VP(K, B, T = 5) 0 1 2 3 4 B

  30. II-16.Maturity Guarantee with DLB • Future Research • For reflected processes more general than Brownian Motion, see Linetsky (2005). • What if reflection is replaced by refraction? See, for example, Gerber & Shiu (2006). Withdrawal Level Protection Level

  31. 참고문헌 • Abramowitz, M. and Stegun, I. (1972) Handbook of Mathematical Functions. Dover Publications: New York • Cox, D. R. and Miller, H. (1965) The Theory of Stochastic Processes. Chapman & Hall • Fung, H-K. and Li, L. K. (2003) Pricing Discrete Dynamic Fund Protections. North American Actuarial Journal7(4): 23-31. • Graversen, S. E. and Shiryaev, A. N. (2000) An Extension of P. Lévy’s Distributional Properties to the Case of a Brownian Motion with Drift. Bernoulli 6(4): 615-620. • Gerber, H. U. and Pafumi, G. (2000) Pricing Dynamic Investment Fund Protection. North American Actuarial Journal 4(2): 28-37. Discussion Paper by Huang, Y-C. & Shiu, E. S. W.

  32. Gerber, H. U. and Shiu, E. S. W. (1998) Pricing Perpetual Options for Jump • Processes. North American Actuarial Journal 2(3): 101-107. • Gerber, H. U. and Shiu, E. S. W. (1999) From Ruin Theory to Pricing Reset Guarantees and Perpetual Put Options. Insurance: Mathematics and Economics 24(1): 3-14. • Gerber, H. U. and Shiu, E. S. W. (2003) Pricing Perpetual Fund Protection with Withdrawal Option. North American Actuarial Journal7(2): 60-92. • Gerber, H. U. and Shiu, E. S. W. (2006) On Optimal Dividends: From Reflection to Refraction. Journal of Computational and Applied Mathematics 186: 4-22. • Imai, J. and Boyle, P. P. (2001) Dynamic Fund Protection. North American Actuarial Journal5(3): 31-51. • Linetsky, V. (2005) On the Transition Densities for Reflected Diffusions. Advances in Applied Probability 37: 435-460.

More Related