540 likes | 841 Views
What is Impact Evaluation?. IE assesses how a program affects the well-being or welfare of individuals, households or communities (or businesses)Well-being at the individual level can be captured by income
E N D
1. Impact Evaluation: An Overview
Lori Beaman, PhD
RWJF Scholar in Health Policy
UC Berkeley
2. What is Impact Evaluation? IE assesses how a program affects the well-being or welfare of individuals, households or communities (or businesses)
Well-being at the individual level can be captured by income & consumption, health outcomes or ideally both
At the community level, poverty levels or growth rates may be appropriate, depending on the question
3. Outline Advantages of Impact Evaluation
Challenges for IE: Need for Comparison Groups
Methods for Constructing Comparison
4. IE Versus other M&E Tools The key distinction between impact evaluation and other M&E tools is the focus on discerning the impact of the program from all other confounding effects
IE seeks to provide evidence of the causal link between an intervention and outcomes
5. Monitoring and IE Example here is an agricultural extension projectExample here is an agricultural extension project
6. Monitoring and IE
7. Logic Model: An Example Consider a program of providing Insecticide-Treated Nets (ITNs) to poor households
What are:
Inputs?
Outputs?
Outcomes?
Impacts?
8. Logic Model: An Example Inputs: # of ITNs; # of health or NGO employees to help dissemination
Outputs: # of ITNs received by HHs
Outcomes: ITNs utilized by # of households
Impact: Reduction in illness from malaria; increase in income; improvements in children’s school attendance and performance
9. Advantages of IE
In order to be able to determine which projects are successful, need a carefully designed impact evaluation strategy
This is useful for:
Understanding if projects worked:
Justification for funding
Scaling up
Meta-analysis: Learning from Others
Cost-benefit tradeoffs across projects
Can test between different approaches of same program or different projects to meet national indicator Talk about PROGRESA and advantages for continuity in political process.Talk about PROGRESA and advantages for continuity in political process.
10. Essential Methodology Difficulty is determining what would have happened to the individuals or communities of interest in absence of the project
The key component to an impact evaluation is to construct a suitable comparison group to proxy for the “counterfactual”
Problem: can only observe people in one state of the world at one time
11. Before/After Comparisons Why not collect data on individuals before and after intervention (the Reflexive)? Difference in income, etc, would be due to project
Problem: many things change over time, including the project
The country is growing and ITN usage is increasing generally (from 2000-2003 in NetMark data), so how do we know an increase in ITN use is due to the program or would have occurred in absence of program?
Many factors affect malaria rate in a given year
12. Example: Providing Insecticide-Treated Nets (ITNs) to Poor Households The intervention: provide free ITNs to households in Zamfara
Program targets poor areas
Women have to enroll at local NGO office in order to receive bednets
Starts in 2002, ends in 2003, we have data on malaria rates from 2001-2004
Scenario 1: we observe that the households in Zamfara we provided bednets to have an increase malaria from 2002 to 2003
13. Basic Problem of Impact Evaluation: Scenario 1 Opposite situation where the project is implemented in a good year. We would erroneously attribute the difference of the project to be B-A. In reality, all HH would have been better off in period Y3 compared to Y2 even without the program. In this case, the true impact is B-C.Opposite situation where the project is implemented in a good year. We would erroneously attribute the difference of the project to be B-A. In reality, all HH would have been better off in period Y3 compared to Y2 even without the program. In this case, the true impact is B-C.
14. Basic Problem of Impact Evaluation: Scenario 1 Opposite situation where the project is implemented in a good year. We would erroneously attribute the difference of the project to be B-A. In reality, all HH would have been better off in period Y3 compared to Y2 even without the program. In this case, the true impact is B-C.Opposite situation where the project is implemented in a good year. We would erroneously attribute the difference of the project to be B-A. In reality, all HH would have been better off in period Y3 compared to Y2 even without the program. In this case, the true impact is B-C.
15. Basic Problem of Impact Evaluation: Scenario 2 Example: Drought. Imagine a land titling project which is intended to improve investments in land & therefore increase income. The project is implemented and the following year a drought hits. Then you might see that there was no effect on household income. (Comparing B and A) However, the project had increased income compared to what would have happened in absence of the project. (B -C) In this case, incomes would be significantly negative if the project had not been implemented.Example: Drought. Imagine a land titling project which is intended to improve investments in land & therefore increase income. The project is implemented and the following year a drought hits. Then you might see that there was no effect on household income. (Comparing B and A) However, the project had increased income compared to what would have happened in absence of the project. (B -C) In this case, incomes would be significantly negative if the project had not been implemented.
16. Comparison Groups Instead of using before/after comparisons, we need to use comparison groups to proxy for the counterfactual
Two Core Problems in Finding Suitable Groups:
Programs are targeted
Recipients receive intervention for particular reason
Participation is voluntary
Individuals who participate differ in observable and unobservable ways (selection bias)
Hence, a comparison of participants and an arbitrary group of non-participants can lead to misleading or incorrect results Hence, similar to what I just showed for before/after comparisons, using arbitrary control groups can lead to misleading or incorrect results.Hence, similar to what I just showed for before/after comparisons, using arbitrary control groups can lead to misleading or incorrect results.
17. Comparison 1: Treatment and Region B Scenario 1: Failure of reflexive comparison due to higher rainfall, and everyone experienced an increase in malaria rates
We compare the households in the program region to those in another region
We find that our “treatment” households in Zamfara have a larger increase in malaria rates than those in region B, Oyo. Did the program have a negative impact?
Not necessarily! Program placement is important:
Region B has better sanitation and therefore affected less by rainfall (unobservable)
18. Basic Problem of Impact Evaluation: Program Placement
19. Basic Problem of Impact Evaluation: Program Placement
20. Comparison 2: Treatment vs. Neighbors We compare “treatment” households with their neighbors. We think the sanitation and rainfall patterns are about the same.
Scenario 2: Let’s say we observe that treatment households’ malaria rates decrease more than comparison households. Did the program work?
Not necessarily: There may be two types of households: types A and B, with A knowing how malaria is transmitted and also burn mosquito coils
Type A households were more likely to register with the program. However, their other characteristics mean they would have had lower malaria rates in the absence of the ITNs (individual unobservables).
21. Basic Problem of Impact Evaluation: Selection Bias Malaria rates are going down overall over time (ITNs being adopted without project, for example.) But Type A households are generally experiencing a quicker decline even without project. With project, however, they experience a larger decline. But the true impact is a much smaller part of difference between Type A with project and Type B households than true impact.Malaria rates are going down overall over time (ITNs being adopted without project, for example.) But Type A households are generally experiencing a quicker decline even without project. With project, however, they experience a larger decline. But the true impact is a much smaller part of difference between Type A with project and Type B households than true impact.
22. Basic Problem of Impact Evaluation: Selection Bias Malaria rates are going down overall over time (ITNs being adopted without project, for example.) But Type A households are generally experiencing a quicker decline even without project. With project, however, they experience a larger decline. But the true impact is a much smaller part of difference between Type A with project and Type B households than true impact.Malaria rates are going down overall over time (ITNs being adopted without project, for example.) But Type A households are generally experiencing a quicker decline even without project. With project, however, they experience a larger decline. But the true impact is a much smaller part of difference between Type A with project and Type B households than true impact.
23. Basic Problem of Impact Evaluation: Spillover Effects Another difficulty finding a true counterfactual has to do will spillover or contagion effects
Example: ITNs will not only reduce malaria rates for those sleeping under nets, but also may lower overall rates because ITNs kill mosquitoes
Problem: children who did not receive “treatment” may also have lower malaria rates – and therefore higher school attendance rates
Generally leads to underestimate of treatment effect
24. Basic Problem of Impact Evaluation: Spillover Effects Opposite situation where the project is implemented in a good year. We would erroneously attribute the difference of the project to be B-A. In reality, all HH would have been better off in period Y3 compared to Y2 even without the program. In this case, the true impact is B-C.Opposite situation where the project is implemented in a good year. We would erroneously attribute the difference of the project to be B-A. In reality, all HH would have been better off in period Y3 compared to Y2 even without the program. In this case, the true impact is B-C.
25. Counterfactual: Methodology We need a comparison group that is as identical in observable and unobservable dimensions as possible, to those receiving the program, and a comparison group that will not receive spillover benefits.
Number of techniques:
Randomization as gold standard
Various Techniques of Matching
26. How to construct a comparison group – building the counterfactual Randomization
Difference-in-Difference
Regression discontinuity
Matching
Pipeline comparisons
Propensity score
27. 1. Randomization Individuals/communities/firms are randomly assigned into participation
Counterfactual: randomized-out group
Advantages:
Often addressed to as the “gold standard”: by design: selection bias is zero on average and mean impact is revealed
Perceived as a fair process of allocation with limited resources
28. Randomization: Disadvantages Disadvantages:
Ethical issues, political constraints
Internal validity (exogeneity): people might not comply with the assignment (selective non-compliance)
External validity (generalizability): usually run controlled experiment on a pilot, small scale. Difficult to extrapolate the results to a larger population.
Does not always solve problem of spillovers
29. When to Randomize If funds are insufficient to treat all eligible recipients
Randomization can be the most fair and transparent approach
The program is administered at the individual, household or community level
Higher level of implementation difficult: example – trunk roads
Program will be scaled-up: learning what works is very valuable
30. 2. Difference-in-difference Observations over time: compare observed changes in the outcomes for a sample of participants and non-participants
Identification assumption: the selection bias or unobservable characteristics are time-invariant (‘parallel trends’ in the absence of the program)
Counter-factual: changes over time for the non-participants
Difference-in-difference also known as double difference of second difference.Difference-in-difference also known as double difference of second difference.
31. Diff-in-Diff: Continued Constraint: Requires at least two cross-sections of data, pre-program and post-program on participants and non-participants
Need to think about the evaluation ex-ante, before the program
More valid if there are 2 pre-periods so can observe whether trend is same
Can be in principle combined with matching to adjust for pre-treatment differences that affect the growth rate
32. Implementing differences in differences: Different Strategies Some arbitrary comparison group
Matched diff in diff
Randomized diff in diff
These are in order of more problems ? less problems, think about this as we look at this graphically
33. Essential Assumptions of Diff-in-Diff Initial difference must be time invariant
In absence of program, the change over time would be identical The earlier example where the drought differentially affected the treatment regions would be a violation of this assumption. If rainfall was observed, then this could still be a strategy. The earlier example where the drought differentially affected the treatment regions would be a violation of this assumption. If rainfall was observed, then this could still be a strategy.
34. Difference-in-Difference in ITN Example Instead of comparing Zamfara to Oyo, compare Zamfara to Niger if:
While Zamfara and Oyo have different malaria rates and different ITN usage, we expect that they change in parallel
Use NetMark data to compare 2000 to 2003 in Zamfara and Niger states
Use additional data (GHS, NLSS) to compare incomes and sanitation infrastructure levels and changes prior to program implementation
35. 3. Regression discontinuity design Exploit the rule generating assignment into a program given to individuals only above a given threshold – Assume that discontinuity in participation but not in counterfactual outcomes
Counterfactual: individuals just below the cut-off who did not participate
Advantages:
“Identification” built in the program design
Delivers marginal gains from the program around the eligibility cut-off point. Important for program expansion
Disadvantages:
Threshold has to be applied in practice, and individuals should not be able manipulate the score used in the program to become eligible
36. RDD in ITN Example Program available for poor households
Eligibility criteria: must be below the national poverty line or < 1 ha of land
Treatment group: those below cut-off
Those with income below the poverty line and therefore qualified for ITNs
Comparison group: those right above the cutoff
Those with income just above poverty line and therefore not-eligible
37. RDD in ITN Example
Problems:
How well enforced was the rule?
Can the rule be manipulated?
Local effect: may not be generalizable if program expands to households well above poverty line
Particularly relevant since NetMark data indicate low ITN usage across all socio-economic status groups
38. 4. Matching Match participants with non-participants from a larger survey
Counterfactual: matched comparison group
Each program participant is paired with one or more non-participant that are similar based on observable characteristics
Assumes that, conditional on the set of observables, there is no selection bias based on unobserved heterogeneity
When the set of variables to match is large, often match on a summary statistics: the probability of participation as a function of the observables (the propensity score)
39. 4. Matching Advantages:
Does not require randomization, nor baseline (pre-intervention data)
Disadvantages:
Strong identification assumptions
In many cases, may make interpretation of results very difficult
Requires very good quality data: need to control for all factors that influence program placement
Requires significantly large sample size to generate comparison group
40. Matching in Practice Using statistical techniques, we match a group of non-participants with participants using variables like gender, household size, education, experience, land size (rainfall to control for drought), irrigation (as many observable characteristics not affected by program intervention)
One common method: Propensity Score Matching
41. Matching in Practice: 2 Approaches Approach 1: After program implementation, we match (within region) those who received ITNs with those who did not. Problem?
Problem: likelihood of usage of different households is unobservable, so not included in propensity score
This creates selection bias
Approach 2: The program is allocated based on land size. After implementation, we match those eligible in region A with those in region B. Problem?
Problems: same issues of individual unobservables, but lessened because we compare eligible to potential eligible
Now problem of unobservable factors across regions
Eligible vs. Potential eligible: those who have land (or land of a particular size) may vary substantially. Especially if baseline data is not very accurate or non-existent, we may be comparing individuals of different income or wealth levels. Or individuals who are politically connected in the village & can therefore take advantage of new opportunities better.
Regional unobservables: land quality, soil type. This data is sometimes available, then very valuable. But many factors: availability of certain products may vary across regions. Different ethnic groups may differ in their agricultural practices as well.Eligible vs. Potential eligible: those who have land (or land of a particular size) may vary substantially. Especially if baseline data is not very accurate or non-existent, we may be comparing individuals of different income or wealth levels. Or individuals who are politically connected in the village & can therefore take advantage of new opportunities better.
Regional unobservables: land quality, soil type. This data is sometimes available, then very valuable. But many factors: availability of certain products may vary across regions. Different ethnic groups may differ in their agricultural practices as well.
42. An extension of matching:pipeline comparisons Idea: compare those just about to get an intervention with those getting it now
Assumption: the stopping point of the intervention does not separate two fundamentally different populations
Example: extending irrigation networks
In ITN example: If only some communities within Zamfara receive ITNs in round 1: compare them to nearby communities will receive ITNs in round 2
Difficulty with Infrastructure: Spillover effects may be strong or anticipatory effect