1 / 31

HW 9

HW 9. P 56-58 (19-21, 42-50 even, 56, 57, 66, 68-72 even) P100 (12-22 even, 19). 19  Find the angles of smallest possible measure coterminal with the following angles: -51  (Like #2). y. 5. x. -5. -5. 5. y. 5. x. -5. -5. 5.

darva
Download Presentation

HW 9

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HW 9 P 56-58 (19-21, 42-50 even, 56, 57, 66, 68-72 even) P100 (12-22 even, 19)

  2. 19  Find the angles of smallest possible measure coterminal with the following angles: -51 (Like #2) y 5 x -5 -5 5

  3. y 5 x -5 -5 5 19  Find the angles of smallest possible measure coterminal with the following angles: -51 (Like #2) 360° -51° 309°

  4. 20  Find the angles of smallest possible measure coterminal with the following angles: -174(Like #2) y 5 x -5 -5 5

  5. y 5 x -5 -5 5 20  Find the angles of smallest possible measure coterminal with the following angles: -174(Like #2) 360° -174 186°

  6. 21  Find the angles of smallest possible measure coterminal with the following angles: 792 (Like #1) y 5 x -5 -5 5

  7. y 5 x -5 -5 5 21  Find the angles of smallest possible measure coterminal with the following angles: 792 (Like #1) 792  – 720  72 

  8. 72.If for , sin  < 0 and cos  > 0, in what quadrant must  lie? What is the sign of tan ? (Like # 3-8) sin  < 0 and cos  > 0 tan  is ___________in Quadrant lV.

  9. 72.If for , sin  < 0 and cos  > 0, in what quadrant must  lie? What is the sign of tan ? (Like # 3-8) sin  < 0 and cos  > 0 lll, lV l, lV lV tan  is negative in Quadrant lV.

  10. Sin = Y0 R Cos = X 1 R Tan = Y0 X Csc = RØ Y Sec =R1 X Cot = XØ Y (1, 0) y 5 x -5 -5 5 44 Find the values of the six trigonometric functions for an angle of 360. (Like #9-12)(R= 1)

  11. Sin = Y√ 3 R 2 Cos = X-1 R 2 Tan = Y√ 3 X -1 Csc = R2√ 3 Y 3 Sec =R=-2 X √3 2 -1 Cot = X√ 3 Y 3 y 5 x -5 -5 5 12. Find the values of the six trigonometric functions of 120°(Like #13-19)

  12. y 5 x -5 -5 5 12. Find the values of the six trigonometric functions of 120° (Like #13-19) √3 2 -1

  13. Sin = Y= 1 R -2 Cos = X = 1 R -2 Tan = Y1 X Csc = R-2 Y Sec =R-2 X -1 -1 Cot = X 1 2 Y y 5 x -5 -5 5 14. Find the values of the six trigonometric functions of 225°(Like #13-19)

  14. y 5 x -5 -5 5 14. Find the values of the six trigonometric functions of 225° (Like #13-19) -1 -1 2

  15. 56.Evaluate 4 sec180 – 2sin2270 (Like #20-21) 4 sec180 – 2sin2270 4(-1) – 2(-1)2 - 4 – 2 - 6

  16. 57.Evaluate -cot290°+4sin270°–3tan180°(Like #20-21) -cot290°+4sin270°–3tan180° -(02) + 4(-1) – 3(0) 0 – 4 – 0 -4

  17. 20. Evaluate cos60 + 2sin230 (Like # 22-23) cos60 + 2sin230 ½ + 2(½)2 ½ + 2(1/4) ½ + ½ 1

  18. 22. Evaluate sec2300–2cos2150+tan45 (Like #22-23) sec2300–2cos2150+tan45 22 – 2(-3/2)2 + 1 4 – 2 (3/4) + 1 4 – 1½ + 1 3½

  19. X2 + Y2 = R2 12 + (3)2 = R2 1 + 3 = R2 4 = R2 2 = R Sin = Y =-3 R 2 Cos = X = 1 R 2 Tan = Y=-3 X Csc = R=-23 Y 3 Sec = R= 2 X 1 1 -3 Cot = X=-3 Y 3 y 5 x -5 -5 5 42  The terminal side of an angle  in standard position goes through the point (1,-3 ). Find the values of the six trigonometric functions of (Like #24-25)

  20. Sin = Y-4 R 5 Cos = X3 R 5 Tan = Y-4 X 3 Csc = R 5 Y -4 Sec =R5 X 3 3 Cot = X3 -4 Y -4 y 5 x -5 -5 5 46  The terminal side of an angle  in standard position goes through the point (3,-4). Find the values of the six trigonometric functions of (Like #24-25)

  21. X2 + Y2 = R2 92 + (-2)2 = R2 81 + 4 = R2 9 85 = R2 85 = R Sin = Y= -285 R 85 Cos = X = 985 R 85 Tan = Y= -2 X 9 Csc = R=85 Y -2 Sec = R= 85 X 9 Cot = X= 9 9 Y -2 -2 y 5 x -5 -5 5 48  The terminal side of an angle  in standard position goes through the point (9,-2). Find the values of the six trigonometric functions of (Like #24-25)

  22. X2 + Y2 = R2 (-22)2 + (22)2 = R2 8 + 8 = R2 16 = R2 4 = R Sin = Y=2 R 2 Cos = X = -2 R 2 Tan = Y= -1 X Csc = R= 2 Y Sec = R= -2 X 22 Cot = X= -1 -22 Y y 5 x -5 -5 5 50  The terminal side of an angle  in standard position goes through the point (-22,22 ). Find the values of the six trigonometric functions of (Like #24-25)

  23. 66. Find the values of the six trigonometric functions of (Like #26-29) sin  = √3 , cos  < 0 5 y 5 x -5 -5 5

  24. y 5 x -5 -5 5 66. Find the values of the six trigonometric functions of  (Like #26-29) sin  = √3 , cos  < 0 X2 +√32 = 52 5 X2 + 3 = 25 Sin = Y Csc = RX2 = 22 R Y X = 22 Cos = XSec =R√3 5 R X Tan = Y Cot = X X Y

  25. sin  = √3 , cos  < 0 5 Sin = Y√3 R 5 Cos = X-√22 R 5 Tan = Y-√66 X 22 Csc = R5√3 Y 3 Sec =R- 5√22 X 22 Cot = X-√66 Y 3 5 3 y 5 x -5 -5 5 66. Find the values of the six trigonometric functions of  (Like #26-29)

  26. y 5 x -5 -5 5 68. Find the values of the six trigonometric functions of  (Like #26-29) tan  = 2,  in Q3 X2 + Y2 = R2 (-1)2 + (-2)2 = R2 1 + 4 = R2 5 = R2 5 = R

  27. tan  = 2,  in Q3 Sin = Y-25 R 5 Cos = X-√5 Tan = Y2- X Csc = R5 Y -2 Sec =R5 X -1 Cot = X1 Y 2 y 5 x -5 -5 5 68. Find the values of the six trigonometric functions of  (Like #26-29)

  28. 70. Find the values of the six trigonometric functions of (Like #26-29) sin  = -2,  in Q3 5 y 5 x -5 -5 5

  29. y 5 x -5 -5 5 70. Find the values of the six trigonometric functions of  (Like #26-29) sin  = -2,  in Q3 5 X2 + Y2 = R2 X2 + (-2)2 = 52 X2 + 4= 25 X2 = 21 X = 21

  30. y 5 x -5 -5 5 70. Find the values of the six trigonometric functions of  (Like #26-29) sin  = -2,  in Q3 5 Sin = Y Csc = R-5 R Y 2 Cos = X-√21Sec =R-5√21 R 5X 21 Tan = Y2√21 Cot = X√21 X 21Y 2 -2 5

  31. Find all values of  in [0, 360) and has the given function value. 16. sin  = -1/2 210, 330 18. cot  = -1 135, 315 19. sec  = -23/3 150, 210

More Related