610 likes | 866 Views
Disordered superfluid thin films with cold atoms. S. Krinner, D. Stadler, J. Meineke, J.-P. Brantut and T. Esslinger Institute for Quantum Electronics, ETH Zürich. Motivation. Two – dimensional superconducting thin films Superconductor – Insulator Quantum Phase Transition
E N D
Disordered superfluid thin films with cold atoms S. Krinner, D. Stadler, J. Meineke, J.-P. Brantut and T. Esslinger Institute for Quantum Electronics, ETH Zürich
Motivation • Two – dimensional • superconducting thin films • Superconductor – Insulator • Quantum Phase Transition • Control Parameter: • Disorder Strength • Film Thickness • Magnetic Field • Mechanism: Bosonic vs Fermionic A. Goldman, N. Markovic; Physics Today 51, 11 (1998) V. Ganthmaker, V. Dolgopolov, Physics-Uspekhi 53, 1 (2010)
Experimental Setup • Degenerate Fermi Gas • Atom number: 1056Li atoms • Temperature: 0.2 TF
Experimental Setup • Degenerate Fermi Gas • Atom number: 1056Li atoms • Temperature: 0.2 TF • Tunable Interactions
Experimental Setup Geometry: Mesoscopic two-dimensional channel connected to two reservoirs J.-P. Brantut et al., Science 337, 1069 (2012)
Inducing a chemical potential bias Symmetric position
Inducing a chemical potential bias Symmetric position Shift trap (slow)
Inducing a chemical potential bias Symmetric position Shift trap (slow) Evaporativecooling
Inducing a chemical potential bias Symmetric position Shift trap (slow) Evaporativecooling Shift trap back (fast)
Projection of a disordered potential Tuning parameter: Disorder strength
Length scales Disorder: Correlation length
Length scales Disorder: Correlation length BEC: Molecule pair size
Length scales Disorder: Correlation length Unitary Fermi Gas: pair size
BEC - Resistance of disordered thin film S. Krinner et al., PRL 110, 100601 (2013)
BEC - Breakdown of superfluid flow S. Krinner et al., PRL 110, 100601 (2013)
BEC - Breakdown of superfluid flow S. Krinner et al., PRL 110, 100601 (2013)
BEC - Breakdown of superfluid flow Classical Percolation Threshold: S. Krinner et al., PRL 110, 100601 (2013)
Transport properties – Unitary Fermi Gas Percolation threshold for pairs
Insitu observation of a disordered Fermi Gas 20 Increasing disorder strength
Insitu observation of a disordered Fermi Gas V H H V H V Increasing disorder strength
Percolation analysis Level
Percolation analysis Level
Percolation analysis Level
Percolation analysis Level
Percolation analysis Level
Percolation analysis Level
Percolation analysis Level /
Percolation analysis Level / /
Percolation analysis Fragmented Regime Pair percolation threshold Smooth Regime
Conclusion – Unitary Fermi Gas (arXiv soon) Increasing Disorder
Outlook: Thermoelectricity J.-P. Brantut et al., arXiv: 1306.5754
Lithium Team J.-P. Brantut D. Stadler S. Krinner J. Meineke T. Esslinger We acknowledge fruitful discussions with: J. Blatter, T.Bourdel, A. Georges, T. Giamarchi, V. Josse, C. Kollath, P. Lugan, C. Mueller, L.Pollet, T. Roscilde, D. Shahar, V. Shenoy, A. Zheludev and W. Zwerger.
Summary 1) Transport measurements: Classical Percolation Threshold: S. Krinner et al., PRL 110, 100601 (2013) Percolation threshold for pairs 2) Insitu study
Length scales Disorder: Correlation length Unitary Fermi Gas: Pair size Coherence length
Disorder-induced breakdown of superfluid flow Classical Percolation Threshold: S. Krinner et al., arxiv:1211.7272 (2012), accepted in PRL
Outlook Strongly correlated transport through projected structures
Current flow Exponential decay of atom number imbalance C R 0.1 Finite resistance although transport through channel is ballistic!? 0 0.4 0.8 time (s)
Conduction as transmission Conduction is transmission from one reservoir to another (Landauer)
Conduction as transmission Conduction is transmission from one reservoir to another (Landauer) Contact resistance: Reflection at the contacts
Conduction as transmission Conduction is transmission from one reservoir to another (Landauer) Contact resistance: Reflection at the contacts Dissipation takes place deeply inside the reservoirs J.-P. Brantut et al., Science 337, 1069 (2012)
Why do we not see Josephson oscillations? Length scales : Channel: 30 µm Coherence length: 1µm Time scales : Transport time: 20 ms Chemical potential diff.: 3 kHz The current has no chance to reverse
Drift velocity Density independent quantity: Drift velocity: vd
Disorder-induced breakdown of superfluid flow Classical percolation threshold Classical Percolation Threshold: