1 / 71

Cold Atoms Experiments

Cold Atoms Experiments. D. Jin JILA, NIST and the University of Colorado. $ NSF, NIST. Investigate many-body quantum physics with a model system. Why study atomic gases?. - low density, low temperature - well understood microscopics unique experimental tools

july
Download Presentation

Cold Atoms Experiments

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cold Atoms Experiments D. Jin JILA, NIST and the University of Colorado $ NSF, NIST

  2. Investigate many-body quantum physics with a model system Why study atomic gases? • - low density, low temperature • - well understood microscopics • unique experimental tools • - controllable interactions n ~ 1013 cm-3,T ~ 100 nK

  3. Rapidly rotating BECs Strongly interacting BECs Atoms in optical lattices + + _ _ 1d and 2d gases Cold molecules Lots of exciting experiments: * Fermi gas and BCS-BEC crossover

  4. Outline: • Introduction • Controlling Interactions • BCS-BEC Crossover • Recent Experiments at JILA

  5. Some Numbers Numbers: atomselectrons n = 1013 1023 cm-3 d = 10-7 10-10 m N = 105 ∞ m = 7x10-26 9x10-31 kg TF=10-6 105 K vF = 10-2 106 m/s T/TF=0.05 <0.001 Trap inhomogeneous density n x

  6. spin  kT spin  Important properties Ultracold (100 nK!) gas : • Meta-stable. • True ground state is a solid. • Spin degree of freedom is frozen out. • Contact interactions (collisions) are s-wave.

  7. s-wave centrifugal barrier V(R) V(R) kT R Contact Interactions Collisions/interactions are only s-wave. non-s-wave R Spin-polarized fermions stop colliding.

  8. Laser cooling and trapping • Magnetic trapping & evaporative cooling • Optical trapping & evaporative cooling Techniques spin 2 spin 1 • can confine any spin-state • can apply arbitrary B-field

  9. Time-of-flight absorption imaging • Probing the atoms Probing the ultracold gas

  10. Fermi gas of atoms 1999: 40K JILA many experimental groups: 40K, 6Li, 173Yb,3He* EF = kBTF EF = hftrap(6N)1/3 Fermi sea of atoms T ~ 0.05 TF

  11. Quantum degeneracy Get T from the measured velocity distribution. reach T/TFermi~ 0.05 N = 4 ·105 ,T = 16 nK T/TFermi = 0.05

  12. Apparatus

  13. II. Controlling Interactions

  14. V(R) R a Interactions s-wave scattering length, a a > 0 repulsive, a < 0 attractive Large |a| → strong interactions

  15. Controlling interactions a > 0 repulsive, a < 0 attractive Large |a| → strong interactions 40K  0 scattering length, a

  16. Magnetic-field Feshbach resonance A magnetic-field tunable atomic scattering resonance Channels are coupled by the hyperfine interaction. molecule state in channel 2 → ← colliding atoms in channel 1

  17. → ← repulsive DB > attractive molecules Magnetic-field Feshbach resonance repulsive free atoms Ebinding

  18. → ← Magnetic-field Feshbach resonance s-wave scattering length, a repulsive free atoms DB > Ebinding attractive molecules

  19. Magnetic-field Feshbach resonance • spectroscopic measurement of the mean-field energy shift repulsive attractive C. A. Regal and D. S. Jin, PRL 90, 230404 (2003)

  20. → ← The atoms reappear if we sweep back to high B. Turning atoms into molecules energy B Ramp across Feshbach resonance from high to low B

  21. Molecule binding energy C. Regal et al. Nature 424, 47 (2003) • extremely weakly bound ! • long lifetime

  22. III. BCS-BEC crossover

  23. kF spin  spin  Making condensates with fermions generalized Cooper pairs molecules Cooper pairs BCS BEC BCS – BEC crossover BCS-BEC crossover theory(partial list):Eagles, Leggett, Nozieres and Schmitt-Rink, Randeria, Strinati, Haussman, Holland, Timmermans, Griffin, Levin …

  24. alkali atom BEC superfluid 4He high Tc superconductors superfluid 3He superconductors BCS-BEC landscape M. Holland et al., PRL 87, 120406 (2001) BEC transition temperature BCS energy to break fermion pair

  25. BCS-BEC Crossover Gap Chemical potential  BEC BCS 1/kFa characterizes interactions in BCS-BEC crossover M. Marini, F. Pistolesi, and G.C. Strinati, Europhys. J. B 1, 151 (1998)

  26. → ← Magnetic-field Feshbach resonance s-wave scattering length, a repulsive free atoms DB > Ebinding attractive molecules

  27. EF Changing the interaction strength in real time : FAST repulsive 2 ms/G DB > attractive molecules

  28. EF Changing the interaction strength in real time: SLOW 40 ms/G DB > attractive molecules

  29. EF Changing the interaction strength in real time: SLOWER 4000 ms/G DB > attractive molecules Cubizolles et al., PRL 91, 240401 (2003); L. Carr et al., PRL 92, 150404 (2004)

  30. Molecular Condensate initial T/TF: 0.19 0.06 Time of flightabsorption image M. Greiner, C.A. Regal, and D.S. Jin, Nature 426, 537 (2003).

  31. ? 4000 ms/G EF ? Observing a Fermi condensate repulsive 40 ms/G DB > attractive

  32. Condensates without a two-body bound state Dissociation of molecules at low density C. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004) DB (gauss) DB = 0.12 G DB = 0.25 GDB=0.55 G T/TF=0.08

  33. Bose-Einstein Condensate Fermi Condensate 2004 Imaging atom pairs stronger attractive interactions C. A. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004)

  34. 4000 ms/G EF Mapping out a phase diagram repulsive a 40 ms/G DB > T/TF attractive molecules

  35. BCS-BEC Crossover condensate fraction 0 0.01 0.05 0.1 0.15 Initial  BEC BCS C.A. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004)

  36. BCS-BEC Crossover condensate fraction 0 Initial a BCS-BEC crossover theory C.A. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004) Q. Chen, C.A. Regal, M. Greiner, D.S. Jin & K. Levin, PRA 73, 041601 (2006).

  37. Vortices Collective excitations Probing the BCS-BEC crossover Condensate fraction Unbalanced spin population Initial Unitarity and Universality Probes of pairing Thermodynamic measurements Correlations in atom shot noise

  38. Probing the BCS-BEC crossover Increasing interactions 1/(kFa) = -80 -1 0 +1 (Ketterle, MIT)

  39. IV. Recent experiments at JILA • Photoemission spectroscopy for ultracold atoms • Exploring a p-wave Feshbach resonance

  40. Photoemission spectroscopy for ultracold atoms Like ARPES Look at the BCS-BEC crossover (s-wave)

  41. The gap and the pseudogap 2D is the energy to break a pair BCS superconductivity BCS-BEC crossover

  42. rf spectroscopy: A brief history C. Regal et al. Nature 424, 47 (2003)

  43. rf spectroscopy: A brief history 2D Molecule dissociation 40K Energy C.A. Regal, C. Ticknor, J. L. Bohn, & D.S. Jin, Nature 424, 48 (2003)

  44. Measuring the gap? 6Li BEC side On resonance 2D D? Transfer 0 0 Coexistence rf offset Coexistence EF J. Kinnunen, M. Rodrıguez,& P. Torma,Science 305, 1131 (2004) C. Chin et al., Science 305, 1128 (2004)

  45. Controversy… 6Li C. H. Schunck et al., Science 316, 867 (2007) Fermi sea T=0

  46. n x Issues Theory papers Trap inhomogeneity: • Torma, Science 2004 • Levin, PRA 2005 • Griffin, PRA 2005 • Stoof, PRA 2008 • Levin, PRA 2008 • Mueller, preprint 2007 • …

  47. Issues Theory papers 6Li Final-state effects: • Chin & Julienne, PRA 2005 • Yu & Baym, PRA 2006 • Baym, PRL 2007 • Perali & Strinati, PRL 2008 • Punk & Zwerger, PRL 2007 • Basu & Mueller, preprint 2007 • Veillette et al., preprint 2008 • Levin, preprint 2008 • …

  48. C. H. Schunck et al., arXiv:0802.0341v1 RF spectroscopy without final-state effects EF 6Li our 40K data EF

  49. Final-state effects 6Li C. H. Schunck et al., arXiv:0802.0341v2 RF offset

  50. Momentum-resolved rf spectroscopy PES for atoms Conservation of energy

More Related