1 / 31

Slides for “Data Mining” by I. H. Witten and E. Frank

Slides for “Data Mining” by I. H. Witten and E. Frank. 2. Input: Concepts, instances, attributes. Terminology What’s a concept? Classification, association, clustering, numeric prediction What’s in an example? Relations, flat files, recursion What’s in an attribute?

daviddoris
Download Presentation

Slides for “Data Mining” by I. H. Witten and E. Frank

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Slides for “Data Mining”byI. H. Witten and E. Frank

  2. 2 Input: Concepts, instances, attributes • Terminology • What’s a concept? • Classification, association, clustering, numeric prediction • What’s in an example? • Relations, flat files, recursion • What’s in an attribute? • Nominal, ordinal, interval, ratio • Preparing the input • ARFF, attributes, missing values, getting to know data

  3. Terminology • Components of the input: • Concepts: kinds of things that can be learned • Aim: intelligible and operational concept description • Instances: the individual, independent examples of a concept • Note: more complicated forms of input are possible • Attributes: measuring aspects of an instance • We will focus on nominal and numeric ones

  4. What’s a concept? • Styles of learning: • Classification learning:predicting a discrete class • Association learning:detecting associations between features • Clustering:grouping similar instances into clusters • Numeric prediction:predicting a numeric quantity • Concept: thing to be learned • Concept description:output of learning scheme

  5. Classification learning • Example problems: weather data, contact lenses, irises, labor negotiations • Classification learning is supervised • Scheme is provided with actual outcome • Outcome is called the class of the example • Measure success on fresh data for which class labels are known (test data) • In practice success is often measured subjectively

  6. Association learning • Can be applied if no class is specified and any kind of structure is considered “interesting” • Difference to classification learning: • Can predict any attribute’s value, not just the class, and more than one attribute’s value at a time • Hence: far more association rules than classification rules • Thus: constraints are necessary • Minimum coverage and minimum accuracy

  7. Clustering • Finding groups of items that are similar • Clustering is unsupervised • The class of an example is not known • Success often measured subjectively

  8. Numeric prediction • Classification learning, but “class” is numeric • Learning is supervised • Scheme is being provided with target value • Measure success on test data

  9. What’s in an example? • Instance: specific type of example • Thing to be classified, associated, or clustered • Individual, independent example of target concept • Characterized by a predetermined set of attributes • Input to learning scheme: set of instances/dataset • Represented as a single relation/flat file • Rather restricted form of input • No relationships between objects • Most common form in practical data mining

  10. A family tree Peter M Peggy F Grace F Ray M = = Steven M Graham M Pam F Ian M Pippa F Brian M = Anna F Nikki F

  11. Family tree represented as a table

  12. The “sister-of” relation Closed-world assumption

  13. A full representation in one table

  14. Generating a flat file • Process of flattening called “denormalization” • Several relations are joined together to make one • Possible with any finite set of finite relations • Problematic: relationships without pre-specified number of objects • Example: concept of nuclear-family • Denormalization may produce spurious regularities that reflect structure of database • Example: “supplier” predicts “supplier address”

  15. The “ancestor-of” relation

  16. Recursion • Appropriate techniques are known as “inductive logic programming” • (e.g. Quinlan’s FOIL) • Problems: (a) noise and (b) computational complexity • Infinite relations require recursion

  17. What’s in an attribute? • Each instance is described by a fixed predefined set of features, its “attributes” • But: number of attributes may vary in practice • Possible solution: “irrelevant value” flag • Related problem: existence of an attribute may depend of value of another one • Possible attribute types (“levels of measurement”): • Nominal, ordinal, interval and ratio

  18. Nominal quantities • Values are distinct symbols • Values themselves serve only as labels or names • Nominal comes from the Latin word for name • Example: attribute “outlook” from weather data • Values: “sunny”,”overcast”, and “rainy” • No relation is implied among nominal values (no ordering or distance measure) • Only equality tests can be performed

  19. Ordinal quantities • Impose order on values • But: no distance between values defined • Example:attribute “temperature” in weather data • Values: “hot” > “mild” > “cool” • Note: addition and subtraction don’t make sense • Example rule: temperature < hot c play = yes • Distinction between nominal and ordinal not always clear (e.g. attribute “outlook”)

  20. Interval quantities • Interval quantities are not only ordered but measured in fixed and equal units • Example 1: attribute “temperature” expressed in degrees Fahrenheit • Example 2: attribute “year” • Difference of two values makes sense • Sum or product doesn’t make sense • Zero point is not defined!

  21. Ratio quantities • Ratio quantities are ones for which the measurement scheme defines a zero point • Example: attribute “distance” • Distance between an object and itself is zero • Ratio quantities are treated as real numbers • All mathematical operations are allowed • But: is there an “inherently” defined zero point? • Answer depends on scientific knowledge (e.g. Fahrenheit knew no lower limit to temperature)

  22. Attribute types used in practice • Most schemes accommodate just two levels of measurement: nominal and ordinal • Nominal attributes are also called “categorical”, ”enumerated”, or “discrete” • But: “enumerated” and “discrete” imply order • Special case: dichotomy (“boolean” attribute) • Ordinal attributes are called “numeric”, or “continuous” • But: “continuous” implies mathematical continuity

  23. Transforming ordinal to boolean • Simple transformation allowsordinal attribute with n valuesto be coded using n–1 boolean attributes • Example: attribute “temperature” • Better than coding it as a nominal attribute Original data Transformed data c

  24. Metadata • Information about the data that encodes background knowledge • Can be used to restrict search space • Examples: • Dimensional considerations(i.e. expressions must be dimensionally correct) • Circular orderings(e.g. degrees in compass) • Partial orderings(e.g. generalization/specialization relations)

  25. Preparing the input • Problem: different data sources (e.g. sales department, customer billing department, …) • Differences: styles of record keeping, conventions, time periods, data aggregation, primary keys, errors • Data must be assembled, integrated, cleaned up • “Data warehouse”: consistent point of access • Denormalization is not the only issue • External data may be required (“overlay data”) • Critical: type and level of data aggregation

  26. The ARFF format

  27. Attribute types • ARFF supports numeric and nominal attributes • Interpretation depends on learning scheme • Numeric attributes are interpreted as • ordinal scales if less-than and greater-than are used • ratio scales if distance calculations are performed (normalization/standardization may be required) • Instance-based schemes define distance between nominal values (0 if values are equal, 1 otherwise) • Integers: nominal, ordinal, or ratio scale?

  28. Nominal vs. ordinal • Attribute “age” nominal • Attribute “age” ordinal (e.g. “young” < “pre-presbyopic” < “presbyopic”)

  29. Missing values • Frequently indicated by out-of-range entries • Types: unknown, unrecorded, irrelevant • Reasons: • malfunctioning equipment • changes in experimental design • collation of different datasets • measurement not possible • Missing value may have significance in itself (e.g. missing test in a medical examination) • Most schemes assume that is not the casec“missing” may need to be coded as additional value

  30. Inaccurate values • Reason: data has not been collected for mining it • Result: errors and omissions that don’t affect original purpose of data (e.g. age of customer) • Typographical errors in nominal attributes  values need to be checked for consistency • Typographical and measurement errors in numeric attributes  outliers need to be identified • Errors may be deliberate (e.g. wrong zip codes) • Other problems: duplicates, stale data

  31. Getting to know the data • Simple visualization tools are very useful • Nominal attributes: histograms (Distribution consistent with background knowledge?) • Numeric attributes: graphs(Any obvious outliers?) • 2-D and 3-D plots show dependencies • Need to consult domain experts • Too much data to inspect? Take a sample!

More Related