520 likes | 608 Views
A detailed exploration of reaction rates, chemical identity, and balance equations in batch reactors, CSTRs, PFRs, and PBRs. Understand decomposition, combination, and isomerization reactions. Learn how reaction rates are calculated and applied in various scenarios.
E N D
Chemical Reaction Engineering Chapter 1: General Mole Balance Equation Applied to Batch Reactors, CSTRs, PFRs, and PBRs
Chemical Identity • A chemical species is said to have reacted when it has lost its chemical identity.
Chemical Identity • A chemical species is said to have reacted when it has lost its chemical identity. • The identity of a chemical species is determined by the kind, number, and configuration of that species’ atoms.
Chemical Identity • A chemical species is said to have reacted when it has lost its chemical identity. • The identity of a chemical species is determined by the kind, number, and configuration of that species’ atoms. 1. Decomposition
Chemical Identity • A chemical species is said to have reacted when it has lost its chemical identity. • The identity of a chemical species is determined by the kind, number, and configuration of that species’ atoms. 1. Decomposition 2. Combination
Chemical Identity • A chemical species is said to have reacted when it has lost its chemical identity. • The identity of a chemical species is determined by the kind, number, and configuration of that species’ atoms. 1. Decomposition 2. Combination 3. Isomerization
Reaction Rate • The reaction rate is the rate at which a species looses its chemical identity per unit volume.
Reaction Rate • The reaction rate is the rate at which a species looses its chemical identity per unit volume. • The rate of a reaction can be expressed as the rate of disappearance of a reactant or as the rate of appearance of a product.
Reaction Rate • The reaction rate is the rate at which a species looses its chemical identity per unit volume. • The rate of a reaction can be expressed as the rate of disappearance of a reactant or as the rate of appearance of a product. Consider species A:
Reaction Rate • The reaction rate is the rate at which a species looses its chemical identity per unit volume. • The rate of a reaction can be expressed as the rate of disappearance of a reactant or as the rate of appearance of a product. Consider species A: rA = the rate of formation of species A per unit volume
Reaction Rate • The reaction rate is the rate at which a species looses its chemical identity per unit volume. • The rate of a reaction can be expressed as the rate of disappearance of a reactant or as the rate of appearance of a product. Consider species A: rA = the rate of formation of species A per unit volume -rA = the rate of a disappearance of species A per unit volume
Reaction Rate • The reaction rate is the rate at which a species looses its chemical identity per unit volume. • The rate of a reaction can be expressed as the rate of disappearance of a reactant or as the rate of appearance of a product. Consider species A: rA = the rate of formation of species A per unit volume -rA = the rate of a disappearance of species A per unit volume rB = the rate of formation of species B per unit volume
Reaction Rate • EXAMPLE: • If B is being formed at 0.2 moles per decimeter cubed per second, ie, • rB = 0.2 mole/dm3/s
Reaction Rate • EXAMPLE: • If B is being formed at 0.2 moles per decimeter cubed per second, ie, • rB = 0.2 mole/dm3/s • Then A is disappearing at the same rate: • -rA= 0.2 mole/dm3/s
Reaction Rate • EXAMPLE: • If B is being formed at 0.2 moles per decimeter cubed per second, ie, • rB = 0.2 mole/dm3/s • Then A is disappearing at the same rate: • -rA= 0.2 mole/dm3/s • The rate of formation (generation of A) is • rA= -0.2 mole/dm3/s
Reaction Rate • For a catalytic reaction, we refer to -rA', which is the rate of disappearance of species A on a per mass of catalyst basis.
Reaction Rate • For a catalytic reaction, we refer to -rA', which is the rate of disappearance of species A on a per mass of catalyst basis. NOTE: dCA/dt is not the rate of reaction
Reaction Rate Consider species j:
Reaction Rate Consider species j: • rj is the rate of formation of species j per unit volume [e.g. mol/dm3*s]
Reaction Rate Consider species j: • rj is the rate of formation of species j per unit volume [e.g. mol/dm3*s] • rj is a function of concentration, temperature, pressure, and the type of catalyst (if any)
Reaction Rate Consider species j: • rj is the rate of formation of species j per unit volume [e.g. mol/dm3*s] • rj is a function of concentration, temperature, pressure, and the type of catalyst (if any) • rj is independent of the type of reaction system (batch, plug flow, etc.)
Reaction Rate Consider species j: • rj is the rate of formation of species j per unit volume [e.g. mol/dm3*s] • rj is a function of concentration, temperature, pressure, and the type of catalyst (if any) • rj is independent of the type of reaction system (batch, plug flow, etc.) • rj is an algebraic equation, not a differential equation
Reaction Rate Consider species j: • rj is the rate of formation of species j per unit volume [e.g. mol/dm3*s] • rj is a function of concentration, temperature, pressure, and the type of catalyst (if any) • rj is independent of the type of reaction system (batch, plug flow, etc.) • rj is an algebraic equation, not a differential equation • We use an algebraic equation to relate the rate of reaction, -rA, to the concentration of reacting species and to the temperature at which the reaction occurs [e.g. -rA = k(T)CA2].
Plug Flow Reactor Mole Balance PFR: The integral form is:
Plug Flow Reactor Mole Balance PFR: The integral form is: This is the volume necessary to reduce the entering molar flow rate (mol/s) from FA0 to the exit molar flow rate of FA.
Packed Bed Reactor Mole Balance PBR The integral form to find the catalyst weight is: