1 / 6

Problem Solving Approach to Biomechanics

Problem Solving Approach to Biomechanics. Proper decision making desired outcome Good problem solving involves an approach that is: Efficient Systematic Structured. Types of Analysis. Qualitative – Involves a non-numerical description. “The boulder is heavy.”

daw
Download Presentation

Problem Solving Approach to Biomechanics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Problem Solving Approach to Biomechanics Proper decision makingdesired outcome Good problem solving involves an approach that is: Efficient Systematic Structured

  2. Types of Analysis • Qualitative – Involves a non-numerical description. “The boulder is heavy.” • Quantitative – Involves the use of numbers. “The boulder weighs 750 pounds.”

  3. Solving Qualitative Problems • Is the movement being performed with proper or adequate force? • Is the movement being performed through an appropriate range of motion? • Is the sequence (or pattern) of body movements appropriate (or optimal) for the execution of the skill? • Qualitative data may be collected based on: • Observation • Knowledge of skill technique

  4. Formal Problem Solving Method • Given a set of information or data EXAMPLE: An ACL requiring reconstruction • Establish a goal or desired result EXAMPLE: Regain strength, stability, and range of motion • Implement a procedure or process to achieve the goal EXAMPLE: Surgery followed by therapeutic rehabilitation

  5. Format for Quantitative Problem Solving GIVEN: List the known data and conditions. (Write down what you know, including implied information.) FIND: Formally state the goal of the solution. DIAGRAM: Pictorially represent the problem (when this is practical). FORMULAS: List the formulas to be used and any inferred or derived information. SOLUTION: Actual steps in solving the problem. Solve for unknown variables. ANSWER: Make sure that this is expressed in the appropriate units.

  6. GIVEN: A car driving at an average velocity of 30 MPH (or 30 miles/hr) FIND: The distance the car will travel in 83 minutes DIAGRAM: FORMULAS: velocity = distance/time Therefore, distance = velocity*time 1 hour = 60 minutes SOLUTION: Time = (83 minutes)(1 hr/60 minutes) = 1.38 hrs distance = (30 miles/hr)(1.38 hrs) ANSWER: distance = 41.4 miles V = 30 miles/hr t = 0 min t = 83 min distance

More Related