1 / 15

22.4 Reactions approaching equilibrium

22.4 Reactions approaching equilibrium. Case 1: First order reactions: A → B v = k [A] B → A v = k’ [B] the net rate change for A is therefore if [B] 0 = 0, one has [A] + [B] = [A] 0 at all time.

dayton
Download Presentation

22.4 Reactions approaching equilibrium

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 22.4 Reactions approaching equilibrium Case 1: First order reactions: A → B v = k [A] B → A v = k’ [B] the net rate change for A is therefore if [B]0 = 0, one has [A] + [B] = [A]0 at all time. the integrated solution for the above equation is [A] = As t → ∞, the concentrations reach their equilibrium values: [A]eq = [B]eq = [A]0 – [A]eq =

  2. The equilibrium constant can be calculated as K = thus: • In a simple way, at the equilibrium point there will be no net change and thus the forward reaction will be equal to the reverse reaction: k[A]eq = k’ [B]eq thus the above equation bridges the thermodynamic quantity, chemical equilibrium, and reaction rates. • For a general reaction scheme:

  3. Determining rate constants with relaxation method • After applying a perturbation, the system (A ↔ B) MAY have a new equilibrium state. Assuming the distance between the current state and the new equilibrium state is x, one gets [A] = [A]eq + x; [B] = [B]eq - x; = - (ka + kb)x Because one gets dx/dt = - (ka + kb)x therefore is called the relaxation time

  4. Example 22.4: The H2O(l) ↔ H+(aq) + OH-(aq) equilibrium relaxes in 37 μs at 298 K and pKw = 14.0. Calculate the rate constants for the forward and backward reactions. Solution: the net rate of ionization of H2O is we write [H2O] = [H2O]eq + x; [H+] = [H+]eq – x; [OH-] = [OH-]eq – x and obtain: Because x is small, k2x2 can be ignored, so Because k1[H2O]eq = k2[H+]eq[OH-]eq at equilibrium condition = = hence k2= 1.4 x 1011 L mol-1 s-1 k1 = 2.4 x 10-5 s-1

  5. Self-test 22.5: Derive an expression for the relaxation time of a concentration when the reaction A + B ↔ C + D is second-order in both directions. To be demonstrated on chalk board

  6. 22.5 The temperature dependence of reaction rates • Arrhenius equation: A is the pre-exponential factor; Ea is the activation energy. The two quantities, A and Ea, are called Arrhenius parameters. • In an alternative expression lnk = lnA - one can see that the plot of lnk against 1/T gives a straight line.

  7. 25 20 15 Series1 10 5 0 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 Example: Determining the Arrhenius parameters from the following data: T/K 300 350 400 450 500 k(L mol-1s-1) 7.9x106 3.0x107 7.9x107 1.7x108 3.2x108 Solution: 1/T (K-1) 0.00333 0.00286 0.0025 0.00222 0.002 lnk (L mol-1s-1) 15.88 17.22 18.19 18.95 19.58 The slope of the above plotted straight line is –Ea/R, so Ea = 23 kJ mol-1. The intersection of the straight line with y-axis is lnA, so A = 8x1010 L mol-1s-1

  8. The interpretation of the Arrhenius parameters • Reaction coordinate: the collection of motions such as changes in interatomic distance, bond angles, etc. • Activated complex • Transition state • For bimolecular reactions, the activation energy is the minimum kinetic energy that reactants must have in order to form products.

  9. Applications of the Arrhenius principle Temperature jump-relaxation method: consider a simple first order reaction: A ↔ B at equilibrium: After the temperature jump the system has a new equilibrium state. Assuming the distance between the current state and the new equilibrium state is x, one gets [A] = [A]eq + x; [B] = [B]eq - x;

  10. 22.6 Elementary reactions • Elementary reactions: reactions which involves only a small number of molecules or ions. A typical example: H + Br2 → HBr + Br • Molecularity: the number of molecules coming together to react in an elementary reaction. • Molecularity and the reaction order are different !!! Reaction order is an empirical quantity, and obtained from the experimental rate law; molecularity refers to an elementary reaction proposed as an individual step in a mechanism. It must be an integral.

  11. An elementary bimolecular reaction has a second-order rate law: A + B → P • If the reaction is an elementary bimolecular process, then it has second-order kinetics; However, if the kinetics are second-order, then the reaction might be complex.

  12. 22.7 Consecutive elementary reactions • An example: 239U → 239Np →239Pu • Consecutive unimolecular reaction A → B → C The rate of decomposition of A is: • The intermediate B is formed from A, but also decays to C. The net rate of formation of B is therefore: • The reagent C is produced from the unimolecular decay of B:

  13. Integrated solution for the first order reaction (A) is: • Then one gets a new expression for the reactant B: the integrated solution for the above equation is: when assuming [B]0 = 0. • Based on the conservation law [A] + [B] + [C] = [A]0

  14. Example. In an industrial batch process a substance A produces the desired compound B that goes on to decay to a worthless product C, each step of the reaction being first-order. At what time will B be present in the greatest concentration? Solution: At the maximum value of B Using the equation 25.7.6 and taking derivatives with respect to t: In order to satisfy = 0 tmax = The maximum concentration of B can be calculated by plugging the tmax into the equation.

More Related