190 likes | 305 Views
The Topic-Perspective Model for Social Tagging Systems. 蔡跳. INTRODUCTION. social data--social annotations--tags a new type of information source tag recommendation、prediction 、clustering、classification、IR. Tags. RELATED WORK1. Topic Analysis using Generative Models text mining:
E N D
INTRODUCTION social data--social annotations--tags a new type of information source tag recommendation、prediction 、clustering、classification、IR
RELATED WORK1 • Topic Analysis using Generative Models text mining: 1.Naïve Bayesian model, 2.Probabilistic Latent Semantic Indexing (PLSI) model, 3.Latent Dirichlet Allocation (LDA) model • correlated LDA, switchLDA, Link-LDA, Topic-Link LDA
RELATED WORK2 • Generative Models for Social Tagging 1.Conditionally-independent LDA (CI-LDA) model 2.Community-based categorical annotation (CCA) model 3.correlated or correspondence LDA (CorrLDA) model
DXK doc-topic分布 KXW topic-word分布 KXT topic-tag分布
Topic-Perspective Model • 真实模拟annotation的生成过程,user 、document、word、tag统一在一个模型中 • motivation:表示和连接可见的及不可见的变量 • Output:user perspective可用于个性化搜素
UXL user-persp分布 DXK doc-topic分布 KXW topic-word分布 KXT topic-tag分布 LXT persp-tag分布 a vector indicating the probability each tag is generated from topics
Parameter Estimation • Variational expectation maximization • Expectation propagation • Gibbs sampling
Experiments and results • Datasets: del.icio.us, 1-2 2009, 41190 documents, 4414 users, 28740 tags, 129908 words, 10% test, 90% train • Evaluation Criterion: perplexity.概括归纳新文档的tags的能力
Experiment Setup • Topic K Perspective L 的选择