1 / 22

CE 100 Intro to Logic Design

CE 100 Intro to Logic Design. Tracy Larrabee (larrabee@soe.ucsc.edu) 3-37A E2 (9-3476) http://soe.ucsc.edu/~larrabee/ce100 2:00 Wednesdays and 1:00 Thursdays Alana Muldoon (newmoon@soe.ucsc.edu) Kevin Nelson (rknelson@ucsc.edu). When will sections be?. Section 1: MW 6-8 Section 2: TTh 6-8.

deacon-wong
Download Presentation

CE 100 Intro to Logic Design

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CE 100Intro to Logic Design • Tracy Larrabee (larrabee@soe.ucsc.edu) • 3-37A E2 (9-3476) • http://soe.ucsc.edu/~larrabee/ce100 • 2:00 Wednesdays and 1:00 Thursdays • Alana Muldoon (newmoon@soe.ucsc.edu) • Kevin Nelson (rknelson@ucsc.edu)

  2. When will sections be? • Section 1: MW 6-8 • Section 2: TTh 6-8

  3. Truth tables… How big are they?

  4. Converting non-canonical to canonical =xy(z+z)+(x+x)yz x y z f=xy+yz 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

  5. Perfect time to talk about Algebraic Identities….

  6. Figure 2.26. Truth table for a three-way light control.

  7. f x1 x2 x3 x3 x2 x1 f

  8. Minimization • Algebraic manipulation • Karnaugh maps • Tabular methods (Quine-McCluskey) • Use a program

  9. x x 1 2 x x 3 4 00 01 11 10 00 1 1 x 2 01 1 1 1 x 3 11 1 1 x 4 f 1 10 1 1 x 1 x 3 f 1 x 1 x x 1 2 x x x 3 3 4 00 01 11 10 f 2 x 2 00 1 1 x 3 01 1 1 x 4 11 1 1 1 10 1 1 f 2

  10. Karnaugh maps • Prime implicants, essential prime implicants • Find all PIs • Find all essential PIs • Add enough else to cover all • Don’t cares • Multiple output minimization

  11. 00 00 01 01 11 11 10 10 0 0 1 1

  12. 00 01 11 10 00 01 11 10

  13. 00 00 01 01 11 11 10 10 00 00 01 01 11 11 10 10 x x 3 4 01 11 00 01 11 00 00 01 01 11 11 10

  14. 00 00 00 00 01 01 01 01 11 11 11 11 10 10 10 10 00 00 00 00 01 01 01 01 11 11 11 11 10 10 10 10 x x = 11 x x = 10 5 6 5 6

  15. 7 inputs

  16. 00 01 11 10 00 01 11 10 The function f ( x,y,z,w) =  m(0, 4, 8, 10, 11, 12, 13, 15). x y z w f 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 xy zw

  17. The function f ( x,y,z,w) =  m(0, 4, 8, 10, 11, 12, 13, 15). List 1 List 2 List 3 0 0 0 0 0 - 0 0 - - 0 0 0 0,4 0,4,8,12 0,8 - 0 0 0 4 0 1 0 0 8,10 1 0 - 0 8 1 0 0 0 4,12 - 1 0 0 10 1 0 1 0 8,12 1 - 0 0 12 1 1 0 0 10,11 1 0 1 - 11 1 0 1 1 12,13 1 1 0 - 13 1 1 0 1 11,15 1 - 1 1 15 1 1 1 1 13,15 1 1 - 1

  18. Prime Minterm implicant 0 4 8 10 11 12 13 15 p 1 0 - 0 1 p 1 0 1 - 2 p 1 1 0 - 3 p 1 - 1 1 4 p 1 1 - 1 5 p - - 0 0 6 Prime Minterm Prime Minterm implicant 10 11 13 15 implicant 10 11 13 15 p 1 p p 2 2 p p 4 3 p p 5 4 p 5

More Related