1 / 74

Subdivision Schemes

Subdivision Schemes. Lee Byung-Gook Dongseo Univ. http://kowon.dongseo.ac.kr/~lbg/. What is Subdivision?. Subdivision is a process in which a poly-line/mesh is recursively refined in order to achieve a smooth curve/surface. Two main groups of schemes:

deandreh
Download Presentation

Subdivision Schemes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Subdivision Schemes Lee Byung-Gook Dongseo Univ. http://kowon.dongseo.ac.kr/~lbg/ Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  2. Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  3. What is Subdivision? • Subdivision is a process in which a poly-line/mesh is recursively refined in order to achieve a smooth curve/surface. • Two main groups of schemes: • Approximating - original vertices are moved • Interpolating – original vertices are unaffected Is the scheme used here interpolating or approximating? Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  4. Geri’s Game Frame from “Geri’s Game” by Pixar Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  5. Subdivision Curves • How do You Make a Smooth Curve? Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  6. Chaikin’s Algorithm Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  7. Corner Cutting Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  8. Corner Cutting 3 : 1 1 : 3 Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  9. Corner Cutting Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  10. Corner Cutting Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  11. Corner Cutting Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  12. Corner Cutting – Limit Curve Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  13. Corner Cutting The limit curve – Quadratic B-Spline Curve A control point The control polygon Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  14. Linear B-spline Subdivision Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  15. Quadratic B-spline Subdivision Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  16. Cubic B-spline Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  17. N. Dyn 4-points Subdivision Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  18. 4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  19. 4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  20. 4-Point Scheme 1 : 1 1 : 1 Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  21. 4-Point Scheme 1 : 8 Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  22. 4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  23. 4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  24. 4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  25. 4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  26. 4-Point Scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  27. 4-Point Scheme A control point The limit curve The control polygon Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  28. Comparison • Non interpolatory subdivision schemes • Corner Cutting • Interpolatory subdivision schemes • The 4-point scheme Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  29. Theoretical Questions • Given a Subdivision scheme, does it converge for all polygons? • If so, does it converge to a smooth curve? • Better? • Does the limit surface have any singular points? • How do we compute the derivative of the limit surface? Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  30. Subdivision Surfaces Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  31. Subdivision Surfaces Geri’s hand as a piecewise smooth Catmull-Clark surface Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  32. Subdivision Surfaces • A surface subdivision scheme starts with a control net (i.e. vertices, edges and faces) • In each iteration, the scheme constructs a refined net, increasing the number of vertices by some factor. • The limit of the control vertices should be a limit surface. • a scheme always consists of 2 main parts: • A method to generate the topology of the new net. • Rules to determine the geometry of the vertices in the new net. Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  33. General Notations • There are 3 types of new control points: • Vertex points - vertices that are created in place of an old vertex. • Edge points - vertices that are created on an old edge. • Face points – vertices that are created inside an old face. • Every scheme has rules on how (if) to create any of the above. • If a scheme does not change old vertices (for example - interpolating), then it is viewed simply as if Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  34. Doo-Sabin Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  35. Doo-Sabin Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  36. Doo-Sabin Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  37. Doo-Sabin Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  38. Doo-Sabin subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  39. Catmull-Clark Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  40. Catmull-Clark Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  41. Catmull-Clark Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  42. Catmull-Clark Subdivision Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  43. Catmull-Clark Subdivision • The mesh is the control net of a tensor product B-Spline surface. • The refined mesh is also a control net, and the scheme was devised so that both nets create the same B-Spline surface. • Uses face points, edge points and vertex points. • The construction is incremental – • First the face points are calculated, • Then using the face points, the edge points are computed. • Finally using both face and edge points, we calculate the vertex points. Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  44. Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  45. Catmull-Clark - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  46. Catmull-Clark - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  47. Catmull-Clark - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  48. Catmull-Clark - results Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  49. Catmull-Clark - results Catmull-Clark Scheme results in a surface which is almost everywhere Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  50. Loop Subdivision • Based on a triangular mesh • Loop’s scheme does not create face points Vertex points New face Old face Edge points Graphics Programming, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

More Related