1 / 34

Electroweak Physics with CDF

Explore Electroweak Physics with CDF Collaboration at EPS 2003, covering Tevatron upgrades, precision measurements, and Boson signatures with detailed analyses and future perspectives.

debran
Download Presentation

Electroweak Physics with CDF

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electroweak Physics with CDF Antonio Sidoti University of Pisa and INFN For the CDF Collaboration EPS - Aachen 18 July 2003 • Outline: • The Tevatron and CDF Upgrade • Ewk Physics: • Baseline Measurements (W/Z) • Precision Measurements • Perspectives Aachen EPS03

  2. Tevatron Booster Recycler CDF DØ Main Injector Fermilab Tevatron Upgrade (RunII) s RunI = 1.8 TeV Now s RunII = 1.96 TeV • New Main Injector: • Improve p-bar production • Recycler ring: • Reuse p-bars Not used yet! Aachen EPS03

  3. Tevatron Performances • Lum at RunI: 110 pb-1 • 2003 Goals: • ~200 pb-1 for Fall • 10 pb -1/week by the end of the year • Achieved • ~9.2 pb-1 best week RunII Integrated Luminosity (pb-1) Weekly Integrated Luminosity (pb-1) 5.1031 3.1031 Peak Luminosity Used for today’s measurements 1.1031 Aachen EPS03

  4. CDF RunII Detector • From RunI: • Solenoid • Muon system • Central Calorimeter Polar angle q • For RunII: • Front-end DAQ • Trigger • Track (L1) and Displaced Track (L2) • New Silicon Tracker (8 Layers) (|h|<2) • Central Outer Tracker • TOF • Plug Calorimeters • Extended Muon Coverage Electron Id up to |h|~2.8 Muon Id up to |h|~1.5 Aachen EPS03

  5. Electroweak Physics at CDF: RoadMap W/Z Cross section (e,m,t,n). Central, Forward Regions Standard High PTProbes: Check Efficiencies, Backgrounds… Beyond SM Precision Electroweak Measurements at ~2TeV AFB Z Asymmetry G(W)Width • Z’ Resonances • New Interactions • Di-Boson Couplings W Asymmetry DiBoson Cross Section Universality W Mass SM Higgs Mass Constraint Aachen EPS03

  6. Neutrinos: Large Missing Energy Only Transverse (ET or Met) Boson Signatures at CDF Electron: EM Calorimeters High Pt (Track) Isolated Muons: Muon Detectors High PT Isolated Z Signature: Two Isolated Leptons (diff charge) W Signature: Isolated Lepton and ET Aachen EPS03

  7. Events Back. •B(W-->ll) (nb) 6% 2.64±0.01stat±0.09sys±0.16lum e 38625  11% 2.64±0.02stat±0.12sys±0.16lum 21599 W Cross Sections(e,m) Electron-Channel • Clean Signature • High ET • Isolated lepton • Missing ET • High & S/B Muon-Channel Aachen EPS03

  8. W Cross Sections (t) th = narrow isol. jet + low trk mult. (1 or 3) + M(vis)<Mt Hadronic tau decays Lepton Universality s.BF(W->tn)=2.620.07(stat) 0.21(syst) 0.16(lum)nb Aachen EPS03

  9. Clean Signature • Two High ET Isolated lepton • Opposite Charge • High & S/B Events Back. •B(Z-->ll) (pb) 267±6stat±15sys±16lum 1830 0.6% e  1631 0.9% 246±6stat±12sys±15lum Z Cross Sections(e,m) Muon Channel Electron Channel Aachen EPS03

  10. Z Cross Section (t) Triggering on t from hadronic decay Clear Z ehsignal Can be our calibration sample Work in Progress for Cross Section Measurement Aachen EPS03

  11. W Cross Section Measurements Z Cross Section Measurements s(ppW tn) s(ppW mn) s(ppW en) s(ppZ mm) s(ppZ ee) combined sW  B(W l)= 2.640 ±0.012stat ±0.093syst ±0.158lum nb combinedsZ B(Z ll)= 251.5 ±4.3stat ±10.6syst ±15.1lum pb s(pp->W)Th@1.96 TeV=2.731 0.002(Th) nb(NNLO), Stirling et al, Phys Lett B531, (2002) Aachen EPS03 s(pp->Z)Th@1.96 TeV=252.1 8.8(Th) pb(NNLO)

  12. From R to G(W) s.BF(W->lvl) R= s.BF(Z->ll) s(pp->W) G(Z) G(W->lnl) R= s(pp->Z) G(Z->ll) G(W) CDF (e): 9.880.24(stat)0.44(syst) CDF(m):10.690.28(stat)0.31(syst) CDF(e+m):10.690.28(stat)0.31(syst) CDF G(W) Measurement • Larger systematic uncertainties: • Detector Simulation (e) • Background Estimates(e-m) • Lepton ID (e-m) G(W)CDF=2146 78 MeV G(W)SM=2092.1 2.5 MeV Aachen EPS03

  13. Extending geometric acceptance of Leptons. • Looking in the Forward regions (High |h|). • Towards Cross Section Measurements: • Establishing Baseline Selection • Trigger and ID efficiencies • Background Studies Extending Detector Acceptance Muon Channel(~0.6<|h|<1.0) i.e. “How to increase sample without increasing Luminosity” Aachen EPS03

  14. Electron Channel 1.1<|h|<2.8 Combining Plug Calorimetry and Forward Tracking Z Boson W Boson Aachen EPS03

  15. Sensitivity to u/d fraction in proton • Constraints on PDF • Smaller Uncertainty from PDF • in highPT EWK and Top Physics Towards W Charge Asymmetry PDF Sensitivity • Charge ID and high |h| coverage Work in Progress Aachen EPS03

  16. Z Forward Backward Asymmetry SM Contributions Beyond SM(Z’,New Interactions) • Probing (Unique at Tevatron): • Z/g* Interference in High Invariant Mass Region (far from Z-pole) Consistent with SM Aachen EPS03

  17. e + m Process: pp->Wg->lnlg Events Back •B(Wl) (pb) e 43 33% 17.2±3.8stat±2.8sys±1.0lum e + m  29% 19.8±4.5stat±2.4sys±1.2lum 38 SM @s=1.96TeV 18.7 ± 1.3 DiBoson Production:Wg • DiBoson Coupling Measurements: • Probe ewk boson self-coupling • Sensitivity to physics BSM(Anomalous Couplings) • Statistically Limited • One High-PT lepton(e,m) • One Photon(DR(g,l)>0.7) • Large Missing ET Aachen EPS03 Consistent with SM

  18. Process: pp->Zg->llg Events Back. •B(Z-->ll) (pb) e 11 4.6% 5.5±1.7stat±0.6sys±0.3lum  14 4.0% 6.0±1.6stat±0.7sys±0.4lum DiBoson Production:Zg • Two High-PT Leptons(Opposite sign) • One Photon (DR(l,g) >0.7) •B(Z-->ll)SM= 5.4 ± 0.4pb Consistent with SM Aachen EPS03

  19. pp->WW->ll’nn’ (l=e,m) Statistics Limited Step for SM Higgs Searches Diboson Cross Sections: WW • Selection: • Two High-Pt Isolated Central Leptons(Opposite Charge) • Large Missing ET • Veto Z production and Jets Bkg 1.530.64 WW->Dil 2.790.62 2 Events observed Main Backgrounds: DY, tt,WZ,Fakes Aachen EPS03

  20. Baseline Electroweak Measurements Re-established • Electroweak Precision Measurement Program • Exploiting larger detector acceptance • Work in progress on dataset with the largest (beyond RunI ) integrated luminosity datasets Consistent with SM Conclusions Aachen EPS03

  21. Backup Tevatron Lum at RunI ~110 pb-1 s RunI = 1.8 TeV Now s RunII = 1.96 TeV Aachen EPS03

  22. =1 =2 =3 CDF Detector Aachen EPS03

  23. Aachen EPS03

  24. a: selection criteria for pp coll. ma: #int/Bunch Crossing (BC) fBC: BC Frequency spp: pp inelastic cross section :Efficiency of CLC “0” hits #hits #part Luminosity Measurement at CDF • Luminosity (L) from CLC (Cherenkov Luminosity Counters): • Discriminating primary (from ppbar)-secondary particles • Time resolution Well adapted for high-L collider Increasing Lum. Uncertainty manly from: ea= MC simulation. spp = 60.41.4 mb (measured by CDF) mclc: Different definitions Systematic uncertainty ~5% Aachen EPS03

  25. th tl Triggering on Taus (hadronic) pTseed> 5 GeV/c Tau Cone Isolation Cone Z pTl > 8 GeV/c ee, e, , eh, h Aachen EPS03

  26. Aachen EPS03

  27. Aachen EPS03

  28. Backup AFB Aachen EPS03

  29. DiBoson(Wg,Zg) Wgamma Z gamma Non SM! Aachen EPS03

  30. DiBoson(Wg) Aachen EPS03

  31. DiBoson:Wgamma Wg->eneg Wg->mnmg Aachen EPS03

  32. WW DiBoson Df~0 Events compatible with tt dilepton Aachen EPS03

  33. Run II with 2 fb-1 will provide a chance to: • Measure Mw to ±40 MeV/c2 • Measure Mtop to ±3 GeV/c2 DØ / CDF Run 2a Goal Constraints on SM Higgs Mass W Mass(Perspectives for RunII) Aachen EPS03

  34. s.BF(W->lvl) R= s.BF(Z->ll) CDF (e): 9.880.24(stat)0.44(syst) CDF(m):10.690.28(stat)0.31(syst) D(e) :10.340.35(stat)0.39(syst) TeV :10.370.16(stat)0.28(syst) From R Tevatron Combined Measurement… First RunII Tevatron Combined (D0+CDF) Measurement • From Tevatron Combined R: • D (e channel) • CDF (e,m channel) Extract Larger systematic uncertainties dominated: Detector Simulation (CDF e) Background Estimates(CDF/D e) Lepton ID (all channels) Aachen EPS03

More Related