1 / 57

CKM phase and CP Violation in B Decays

David Brown Lawrence Berkeley National Lab BaBar Collaboration. CKM phase and CP Violation in B Decays. August 14, 2007 Daegu, Korea. Talk Outline. Review of CPV in the B system Results on the CKM unitarity angle  =  1 Results on the CKM unitarity angle  =  2

decker
Download Presentation

CKM phase and CP Violation in B Decays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. David Brown Lawrence Berkeley National Lab BaBar Collaboration CKM phase and CP Violation in B Decays August 14, 2007 Daegu, Korea

  2. Talk Outline • Review of CPV in the B system • Results on the CKM unitarity angle =1 • Results on the CKM unitarity angle =2 • Results on the CKM unitarity angle =3 • Results on the Bs phase angle s • Results on Direct CPV • Conclusions I will concentrate on (some) New Results D. Brown, CKM phase and CP Violation in B Decays

  3. Quark-Sector Flavor in the SM • 3 known generations of quark doublets • (u,d) (c,s) (t,b), EM charge (2/3, -1/3) • Origin of families unknown in SM • Only the charged-current EW interaction can change flavor in the SM • EW eigenstates aren’t mass eigenstates • Only SM connection between generations! VCKM D. Brown, CKM phase and CP Violation in B Decays

  4. Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb 1-2  A 3(-i) - 1- 2/2A 2 A3(1- -i) -A 2 1 The CKM matrix • Relates EW flavor and quark mass eigenstates • No prediction of values within SM • 3 generations, Unitarity  3 rotations, 1 phase • Non-zero phase implies CPV in flavor transitions • New Physics (NP) with non-SM flavor couplings would make the CKM description incomplete • Eg: 4th generation, SUSY, … Wolfenstein parameterization = + O(4) VCKM = ≈0.23, A≈0.8,≈0.2, ≈0.4 D. Brown, CKM phase and CP Violation in B Decays

  5. The Unitarity Triangle(s) • Graphical expression of unitarity condition(s) • 1 triangle has roughly equal-length sides • CKM Unitarity violation would imply New Physics • Test SM + CKM by over-constraining angles and sides (r h)  -i a g b  (,0) (1,0) D. Brown, CKM phase and CP Violation in B Decays

  6. Consequences of CPV • CPV can occur when multiple BF amplitudes interfere • CPV in decay (direct CPV) • CPV in mixing (original CPV seen in KS, KL) • Very small for B system (exp. limit <10-2, predicted ~10-3 in SM) • CPV in mixing + decay (indirect CPV) • B system uniquely situated for CPV studies • Mixing, long lifetime, large production X-section, rich decay set, heavy quarkstheoretically accessible, … Mixing+Decay CPV Direct CPV B0 and B   B0 B0 e-2i  CP  S1† EW1 AF 0 AF EW1† S2† EW2 decay S1 S2 decay EW2†   FCP †≠ D. Brown, CKM phase and CP Violation in B Decays

  7. Detecting Indirect CPV in B-decays B0(b) e- Flavor tagging Q≈30% at B-factories ≈few % at Tevatron K- B-factories Coherent evolution e- e+ m+ (4S) mixing BfCPexclusive reconstruction ~10% p+ Dz≈bgct p- m- D. Brown, CKM phase and CP Violation in B Decays

  8. The B-factories • Asymmetric e+e- colliders make boosted (4S) • cB~200 m in the lab frame • General-purpose detectors • Tracking EM calorimetery, muon system, PID,… • BaBar/PEP-II Total Sample ≈ 450 fb-1 • KEK-B/Belle Total Sample ≈ 700 fb-1 • Data sets have increased ~10% in the last year • Many new results from data ‘backlog’! • Tevatron Run2 results on ≥1fb-1 coming out now D. Brown, CKM phase and CP Violation in B Decays

  9. Beta B0 B0 (r h) h a g b r (,0) (1,0) D. Brown, CKM phase and CP Violation in B Decays

  10. B0 charmonium K0:bccs f= CP eigenvalue = -1(KS),+1(KL) No EW phase • SM decay dominated by a single tree diagram • Leading order (Tree) diagram has no weak phase • asymmetry directly measures  • Higher-order diagrams are smaller by factor ~O(10-210-3) • most have same EW phase • BF ≈10-3 (color suppressed) • SM expectation: S = -f sin2bC≈0 D. Brown, CKM phase and CP Violation in B Decays

  11. B0 charmonium K0: bccs NBB = 535M Nsig = 7484±87 NBB = 383M Nsig = 4748 Purity=55% background PRL 98, 031802 (2007) hep-ex/0703021 MB (GeV/c2) background • Easily reconstructed final states • Charmonium l+l- has high efficiency, low background • KS+- easily recognized in tracking detectors • Strong kinematic variables separate B from background • MB constrained to known beam energies to improve resolution • EEB-Ebeam is an independent kinematic variable D. Brown, CKM phase and CP Violation in B Decays

  12. sin2b in B0→ charmonium K0 : bccs NBB = 383M J/KS NBB = 535M B0 tags B0 tags J/KL background PRL 98, 031802 (2007) BaBar Preliminary (hep-ex/0703021) t (ps) ft (ps) D. Brown, CKM phase and CP Violation in B Decays

  13. b from B0→ charmonium K0 : bccs Sf = sin2 95%CL contours Sin2=0.678±0.026 New world average 2-fold ambiguity resolved by several cos2 measurements Sets the gold standard for CPV measurements B0 → D03-bodyh0 Dalitz Analysis (BaBar) B0 → KS+- Dalitz Analysis (BaBar) B0 → KSK+K- Dalitz Analysis (BaBar) new + older results on B0 → J/K*, … D. Brown, CKM phase and CP Violation in B Decays

  14. B0→ J/0: b → ccd • Enhanced sensitivity to higher-order (penguin) diagrams • Cross-check on assumption that Cgold≈0 NP particle can enter in loop  M.Ciuchini,M.PieriniandL.Silvestrini,Phys.Rev.Lett95,221804(2005) C NBB = 535M S=−0.65 ± 0.21± 0.05 C= -0.08 ± 0.16 ± 0.05 290 J/ψπ0 candidates Purity=88±7% (0,0) hep-ex/0708.0304 (submitted to PRD.RC) MB (GeV/c2) S D. Brown, CKM phase and CP Violation in B Decays

  15. B0 → D+D- : b → ccd D- D- B0  D+ B0 D+ • Two decay amplitudes interfere • b → c tree diagram with S = -sin2b • b → d penguin diagram with S ~ 0 • Penguin is expected to be small • ~2-10% (PRD 61, 014010, 2001) • Larger backgrounds Standard Model predicts: Y. Grossman and M. Worah, Phys. Lett. B 395, 241 (1997) D. Brown, CKM phase and CP Violation in B Decays

  16. S and C in B0 → D+D- : b → ccd C B0 tags (0,0) Belleclaims evidence for direct CP violation at 3.2 s NBB = 383M Nsig =131±14 B0 tags NBB = 535M Nsig =128±14 background S CCP(B0D+D-) = -0.91 ± 023 ± 0.06 CCP(B0D+D-) = +0.11± 022 ± 0.07 hep-ex/0702031 PRL 98,221802(2007) New Belle Result: Agreement on C has CL=0.003 ⇒ >3.0σ discrepancy ACP(B+D+D0) = 0.01 ± 0.08 ± 0.02 Preliminary BELLE-CONF-0762 D. Brown, CKM phase and CP Violation in B Decays

  17. CPV in B0 → D*+D*- : b → ccd • Same diagram as B0 → D+D-,but Vector-Vector final state • f (CP) depends on helicity, analyzed using D* decay angles BaBar preliminary NBB = 383M Nsig =617±33 background hep-ex/0708.1549 D. Brown, CKM phase and CP Violation in B Decays

  18. S and C in b → ccd -Sf Cf sin2 Silver modes: generally good agreement with golden mode S= sin2bC=0 D. Brown, CKM phase and CP Violation in B Decays

  19. Purely Penguin decays: bsqq • No tree-level contributions • New Physics can enter at equal order as SM • SM predicts same EW phase as b → cW- • Comparison with charmonium sin2b provides a direct test for NP • Many accessible modes • NP might couple to some or all • More challenging experimentally • BF ~10-5, large backgrounds from continuum SM New Physics s  s q q q q SUSY,… D. Brown, CKM phase and CP Violation in B Decays

  20. (Spherical) (Jet-like) B0 → KS00 :bsqq LR>0.9 LR>0.9 Nsig = 307±32 LR MB(GeV/c2) DE(GeV) Preliminary S =+0.43 ± 0.49 ± 0.09 C=+0.17 ± 0.24 ± 0.06 LR>0.9, good tag B0 tags B0 tags NBB = 657M BELLE-CONF-0723 2.0 from the SM expectation S= -sin2 t (ps) t (ps) D. Brown, CKM phase and CP Violation in B Decays

  21. B0 → KS+- :bsqq • Measure TDCPA at each point on the Dalitz plot • Include interference between +-,KS± resonances • 0, f0,K*, … • Supersedes previous results on B0 → KS ,KSf0 • + Direct CPV in B0 → K*+relative phases 2 2 B0 → KSf0(980) B0 → KS(770) 2eff 2eff hep-ex/???? 2.1 > 2 from charmonium 2-fold  ambiguity (partially) resolved D. Brown, CKM phase and CP Violation in B Decays

  22. sin2b in bsqq Penguins -Sf= sin2eff sin2    New naïve HFAGaverage <1 from the naïve golden mode sin2 value               New/Updated BaBar/BelleResult D. Brown, CKM phase and CP Violation in B Decays

  23. (r h) h a g b r (,0) (1,0) Alpha • In principle measurable using any bu dominated B0fCP • Very rare decays! BF~10-6 • In practice, penguin modes have similar magnitude, different EW phase  extracting  is a challenge!   D. Brown, CKM phase and CP Violation in B Decays

  24. B0→ +- : buud B0tags B0 tags B0 tags NBB = 383M Nsig = 1139±39 B0 tags NBB = 535M Nsig = 1464±65 PRL 98, 211801 (2007) PRD 75 (2007) 012008 2.1 tension in C D. Brown, CKM phase and CP Violation in B Decays

  25. Extracting  from B0→ +  - • CPV well established • Problem: extract  from eff • Solution: Isospin • Measure isospin-related modes • Rates and C/ACP (if possible) • Adds another discrete ambiguity! M. Gronau and D. London, Phys Rev. Lett. 65, 3381 (1990) 9° 97 ± 11° BR(B0→ π0 π0) = (1.47 ± 0.25 ± 0.12)×10-6 C(B0 → π0 π0) = -0.49 ± 0.35 ± 0.05 BR(B± → π± π0) = (5.02 ± 0.46 ± 0.29)×10-6 A(B± → π± π0) = 0.03 ± 0.08 ± 0.01 hep-ex:0707.2798 D. Brown, CKM phase and CP Violation in B Decays

  26. B0→ a1+p: buud First TDCPV analysis of a1+p • Large signal observed • significant background • use SU(3) to relate states • BF B0→ K1+p • BF and ACP in B0→ a1- • Next step: constrain  NBB = 383M B0 tags background B0→ K1+p B0 tags Nsig = 608 ± 53 PRL. 97, 051802 (2006) MB (GeV/c2) PRL 98 181803 αeff = 78.6°±7.3° NBB = 535M Nsig = 654 ± 70 hep-ex/0706.3279 MB (GeV/c2) D. Brown, CKM phase and CP Violation in B Decays

  27. B0→ 0 : buud TDCPV in  NBB = 535M NBB = 383M Nsig=729 ± 60 • Vector+Vector final state • Analyze helicity to separate CP admixture as in B0→ D*+D*- • Use Isospin triangle to constrain  as in  hep-ex/0705.2157 PRD76, 011104(R) (2007) t (ps) t (ps) C = 0.01 ± 0.15 ± 0.06 S = -0.17 ± 0.20 fL = 0.992 ± 0.024 D. Brown, CKM phase and CP Violation in B Decays

  28. The critical side: B0→ 0 NBB = 520M NBB = 427M Nsig = 85 ± 27 ± 17 Nsig=34±16 BaBar Preliminary MB GeV/c2 M GeV/c2 Lsig/ Lsum Preliminary signal BELLE-CONF-0747 Preliminary hep-ex/0708.1630 First TDCPV analysis of 0! D. Brown, CKM phase and CP Violation in B Decays t (ps)

  29. B0→ (0 BaBar Preliminary @68%CL Constraining using buud ° D. Brown, CKM phase and CP Violation in B Decays

  30. (r h) h a g b r (,0) (1,0) Gamma  B+,B- rate asymmetry (DCPV) is sensitive to The problem: How to distinguish EW phase from strong phase? Can also measure 2+ via TDCPV in B0D(*)+,--,+ D. Brown, CKM phase and CP Violation in B Decays

  31.  from B±D0K± • Three Answers • D0 decays to 2-body CP eigenstates (K+K-, +-,…) GLW • large + unknown asymmetry in B+,B- BFs • D0 decays to non-CP eigenstates (K+  -, K+ - 0,…) ADS • Better match in rates (Cabbio suppression enhances interference) • D0 decays to 3-body (K0S+-) GGSZ • Uses (~known) variation of resonance strong phase across Dalitz plot • Requires detailed model of resonant substructure • All methods have (varying) weakness due to unknown or under-constrained parameters •  Constrain  by combining results from all methods GLW Gronau, London (1991),Gronau, Wyler (1990) ADS  Atwood, Danietz, Soni (1997) GGSZ Giri, Grossman, Soffer, Zupan (2003) D. Brown, CKM phase and CP Violation in B Decays

  32. Combined constraint on  = 88 ± 16 ° Includes a new preliminary result: B±D0K± GLW (BaBar) ° D. Brown, CKM phase and CP Violation in B Decays

  33. The Unitarity Triangle: angles only D. Brown, CKM phase and CP Violation in B Decays

  34. The Unitarity Triangle: all constraints A consistent picture across a huge array of measurements D. Brown, CKM phase and CP Violation in B Decays

  35. BsJ/ (fs): bccs • Same quark decay as B0charmonium K0 • Bs mixing goes as Vts no CPV phase as in Bd mixing • SM prediction of fs = 4.2 ± 1.4X10-3 Hep-ph/0612167 Simultaneous fit to fs, s Consistent with SM D. Brown, CKM phase and CP Violation in B Decays

  36. Direct CPV in charmless B Decays K*0 3.8 K+0 3.0 K+- ~8 K+ 3.0 Isospin analogs AK(B+K0)=0.009 ± 0.025 AK(B+K+)=0.050 ± 0.025  AK(Bd)=−0.095 ± 0.012 (WA) Effect from EW penguins? D. Brown, CKM phase and CP Violation in B Decays

  37. Direct CPV in Bs Decays AK(Bd)=-0.086 ± 0.023 ± 0.009 3.5 significance AK(Bs)=0.39 ± 0.15 ± 0.08 2.3 significance Comparing AK(Bd, Bs) Consistent with SM prediction ≈1.0 H.J.Lipkin, Phys. Lett. B 621, 126 (2005) D. Brown, CKM phase and CP Violation in B Decays

  38. Conclusions • Standard Model CKM CPV is well established • Confirmed by many analyses, several experiments • Unitarity angle precision continues to improve • Sin2 is still statistics limited! • New, innovative techniques are still being developed • CPV provides a unique window on the SM • The mysteries of flavor, generations, matter-anti-matter asymmetry remain unsolved • The existing B-factories will soon be turned off • BaBar,Belle complete in ~2008,Tevatron in ~2009 • Look for final analyses in 2009-2010! • Future flavor physics depends on future facilities • LHCB, super-B, super-Belle, … D. Brown, CKM phase and CP Violation in B Decays

  39. BACKUP

  40. The B-factories Belle KEK-B PEP-II D. Brown, CKM phase and CP Violation in B Decays

  41. Datasets Pep-II BaBar Total ≈ 450 fb-1 Total = ≈ 700 fb-1 KEK-B BELLE D. Brown, CKM phase and CP Violation in B Decays

  42. B0→ D*+- D-+ : b → ccd • Final state not a CP eigenstate • Could show time-integrated charge asymmetry • TDCPA modified by strong phase difference (S+- ≠ S-+, C+- ≠ C-+) • If penguin contribution is zero, C-+ = -C+- , beff=b • If S-+= -S+- ,No CPV sin(2beff) = 0 D. Brown, CKM phase and CP Violation in B Decays

  43. B0→D*+D- B0→D*-D+ NBB = 383M 219 ± 18 signal events 280 ± 19 signal events Hep-ex/0705.1190 S and C in B0→ D*+- D-+ : b → ccd Time-integrated asymmetry consistent with 0 sin(2b) cosd  0 @ 4s No significant direct CPV D. Brown, CKM phase and CP Violation in B Decays

  44. B0 → D03-bodyh0 : b → cud NBB = 383M Nsig = 335 ± 32 BaBar Preliminary (update) • D0→KS+- = coherent ensemble of quasi 2-body decays • (Known) variation of strong phase over Dalitz plot allows extraction of strong and weak phase differences! • Must measure TDCPA at all points in the Dalitz plot • 2-fold ambiguity on  can (in principle) be resolved hep-ex/???? D. Brown, CKM phase and CP Violation in B Decays

  45. B0 → D03-bodyh0 Dalitz Analysis : b → cud BaBar Preliminary B0 tagged h0 = 0,('), B0 tagged K*- K*+ 0 Asymmetry cos2>0 at 84% CL D. Brown, CKM phase and CP Violation in B Decays

  46. B0 → KSK+K- :bsqq • Measure TDCPA at each point on the Dalitz plot • Includes interference between K+K-,KSK± resonances hep-ex/0706.3885 ACP = −0.015 ± 0.077 ± 0.053 eff = 0.352 ± 0.076 ± 0.026 rad 4.8 significance D. Brown, CKM phase and CP Violation in B Decays

  47. B0 → D0CPh0 :b → cud • b → cud tree dominates • b → ucd suppressed ~1/50 • D0CP D0 → KK, KSw • also D*0→ D0CPp0 • h0p0, w, h NBB = 383M Nsig =335±32 background hep-ex/0703019 SM predicts S=-sin2, C≈0 First TDCPA in these modes! D. Brown, CKM phase and CP Violation in B Decays

  48. B0 → KSKS:bdss EW decay phase cancels mixing phase No CPV expected! NBB = 657M K0 Entries/2.5ps B0 tags B0 tags Vtd Nsignal=33±6 B0 K0 d R. Fleischer and S. Recksiegel, Eur.Phys.J.C38:251-259,2004 C background Raw Asymmetry (0,0) BELLE-CONF-0723 S = - 0.38 0.77 0.08 C= +0.380.38  0.05 BaBar result PRL 97 (2006) 171805 SM expectation:S≈0,C≈0 S A.K.Giri and R.Mohanta, JHEP,11,084(2004) D. Brown, CKM phase and CP Violation in B Decays

  49. Constraining in B → a1p via SU(3) • No phase-space overlap between a1+, a1-, and a10 • Can use SU(3) to relate pK and a1K1A • Necessary BFs are measured,  not yet computed Gronau & Zupan, Phys. Rev. D73, 057502 (2006) B0→ a1- B0→ K1+p BaBar Preliminary MB GeV/c2 MK GeV/c2 BF(B0a1- K+)•BF(a1-+--) = 8.2 ± 1.5 ± 1.2 X10-6 Ach(B0a1- K+)= -0.16 ± 0.12 ± 0.01 BF(B+a1+ K0) •BF(a1+++-) =17.4± 2.5 ± 2.2 X10-6 Ach(B+a1+ K0) =0.12± 0.11 ± 0.02 BF(B0K1+(1270)-) = 12.0 ± 3.1 +9.3-4.5 X10-6 BF(B0K1+(1400)-) = 16.7 ± 2.6 +3.5-5.0 X10-6 D. Brown, CKM phase and CP Violation in B Decays

  50. B0→   : buud • Can use Isospin as in +- • ‘pentagon’ relationship -> more terms to measure • New method: use (known) resonance phase variation over Dalitz to analyze EW phase • Eliminates some ambiguities Interference Region. ρ+ π- Monte Carlo ρ-π+ B0→ρ+ π- B0→ρ0 π0 Monte Carlo ρ0π0 B0→ρ- π+ D. Brown, CKM phase and CP Violation in B Decays

More Related