1 / 35

The Engineer of 2020

The Engineer of 2020. Visions of the Future of Engineering. National Academy of Engineering. Fall 2002 workshop Envision the engineer of 2020. http://www.nae.edu/nae/naehome.nsf. Our 21 st Century World. Changes over last century

deiter
Download Presentation

The Engineer of 2020

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Engineer of 2020 Visions of the Future of Engineering

  2. National Academy of Engineering • Fall 2002 workshop • Envision the engineer of 2020 http://www.nae.edu/nae/naehome.nsf

  3. Our 21st Century World • Changes over last century • Engineering, through technology, has “forged an irreversible imprint on our lives and our identity” • The developed world • Longer, healthier lives • Improved work and living conditions • Global communication • Ease of transit • Access to art and culture • Moral and ethical challenge for the future • Make the same true for the developing world

  4. Population & Demographics • Global challenges • The world will become more crowded • 8 billion by 2020 • There will be more centers of dense population • Mostly in countries in the developing world • Many will live in regions with fewer technological resources

  5. Population & Demographics • Aging society in the developed world • By 2050, ratio of taxpaying workers to nonworking pensioners in US will fall from 4:1 to 2:1 • Impacts: • Economic stress • Increasing demands on health care system • Heightened labor force tensions • Increasing political instability

  6. Population & Demographics • 2000 US Census • By 2050, almost half the US population will be non-white • Challenges: • Engineering profession must develop acceptable solutions to an increasingly diverse population • Engineering schools must attract students from under-represented sectors

  7. Population & Demographics • The “Youth Bulge” & Security Implications • Nations in many politically unstable parts of the world • Disproportionate number of 15- to 29-year olds • Results • Continued social and political unrest and threats from terrorism and religious fundamentalism • Increased need for military services and security measures at home and abroad • Migration from youth bulge countries to rapidly aging countries may mitigate the problem • US concerns regarding increased terrorism will probably limit this migration • Increased need for engineering schools to attract domestic students

  8. The Global Environment • Natural resource & environmental concerns • Increasing demand for energy • Declining petroleum production and reserves • Global deforestation • Increasing demands for potable water • Falling water tables in China, India, & US, which produce half the world’s food supply • Global warming • Depletion of the ozone layer • Challenges: • Ecologically sustainable practices • Technological solutions coupled with conservation

  9. Breakthrough Technologies • Biotechnology • Nanotechnology • Materials Science & Photonics • Information & Communications Technology • The Information Explosion • Logistics

  10. Biotechnology • Tissue engineering & regenerative medicine • Replacement skin for burn patients • Spinal cord repair • Repair/replacement meniscal and articular cartilage • Repair/replace bladder http://www.cnn.com/2006/HEALTH/conditions/04/03/engineered.organs/index.html http://www.jhu.edu/news_info/news/home02/aug02/stemcell.html

  11. Biotechnology • Nanotechnology & MEMS • Bioinformatics • Defense against biological and chemical weapons • Civil engineers  understand transport characteristics of agents and diffusivity in air and water supplies • Mechanical engineers  devise pumps and filters able to deal with airborne and waterborne agents • Electrical engineers  design sensing and detection instruments http://www.tastechip.com/cardiac/cardiac_diagnostics_research.html

  12. Biotechnology • Safety & reliability considerations • Engineers must acquire basic knowledge about biological systems • Engineers must pay attention to fault-tolerant designs

  13. Nanotechnology • Multidisciplinary • Bioengineering • Materials science • Electronics http://www.physorg.com/news83421615.html http://www.nanoengineer-1.com/mambo/index.php?option=com_content&task=view&id=60&Itemid=57&PHPSESSID=855def63bf78fef91ffed786f044ba5d http://cohesion.rice.edu/centersandinst/cben/research.cfm?doc_id=5091

  14. Nanotechnology • Possible future technologies • Environmental cleaning agents • Chemical detection agents • Creation of biological organs • Development of NEMS • Development of ultrafast, ultradense electrical and optical circuits http://www.media.rice.edu/media/Current_Issue.asp?SnID=1140090185

  15. Materials Science & Photonics • Traditional engineering disciplines will increasingly incorporate new materials • Composites • Atomic-scale machines • Molecular-based nanostructures • Smart materials & structures • New fuel cell technologies • Optical sources • Decreasing physical size • Increasing power and reliability http://designinsite.dk/htmsider/md950.htm http://designinsite.dk/htmsider/m1306.htm

  16. Information & Communications Technology • To appreciate the potential, consider those technologies that your parents lived without • Personal computers • Cellular phones • Photocopiers • Fax machines • Video conferencing • Internet

  17. Information & Communications Technology • Foreseeable future • Pocket-sized 10 gig hard drives and computers • Desktop machines and software powerful enough to make routine activities of contemporary engineers obsolete • Worldwide broadband networks • Huge volumes of data • Realtime collaboration anywhere in the world • Perceptions of connectedness, location, & access will continue to change

  18. Information & Communications Technology • Imperative for engineers • Accommodate connectivity • Develop a role for core competencies in • Fundamentals of digital systems, electronics, electromagnetics, photonics, discrete & continuous mathematics, materials • Cultivate skills related to use of IT for communications purposes • Remain state of the art in IT and updated common engineering practices • Make common use of computer-based design-build engineering

  19. The Information Explosion • Exponential growth in data and knowledge • Previously, possible for a person to be conversant about much of science, mathematics, medicine, music, and the arts • Today, an individual’s area of expertise continues to diminish in relation to total body of knowledge • Example of future  Health care today • Specialists

  20. The Information Explosion • Engineering’s response to explosion of knowledge • Past  Develop new areas of focus with increased depth of individual knowledge and decreased breadth of knowledge • Future  The ability to function on interdisciplinary level is critical for solving complex problems • Mars Exploration Rovers (MER) mission

  21. Logistics • Revolution in movement of goods & services and improved productivity • Wireless communication • Handheld computers • Inventory tracking and database software • “Just-in-time” manufacturing • Far-flung networks of suppliers and manufacturing units linked together • Future  Challenge of moving goods and services more efficiently will continue

  22. Technological Challenges • Physical Infrastructures in Urban Settings • Information & Communications Infrastructure • The Environment • Technology for an Aging Population

  23. Physical Infrastructures in Urban Settings • Past & present approaches to urban development • Attention to human services & private-sector requirements • Insufficient attention to environmental impact & sustainability • Result  Large cities are the victims of • Pollution • Traffic & transportation infrastructure concerns • Decreasing greenery • Poor biodiversity • Disparate educational services

  24. Physical Infrastructures in Urban Settings • Arguably, the US has the best physical infrastructure in the developed world • BUT these infrastructures are in serious decline • Water treatment • Waste disposal • Transportation • Energy facilities • Engineering is ideally positioned to address these issues • Requires the will of public leaders & the general public • Security enhancements  global terrorism

  25. Information & Communications Infrastructure • More recent vintage  has not suffered the ravages of time • Vulnerabilities include accidental or intentional events • Malicious attacks • System overloads • Natural disasters • Profound effect on our national economy, our national and personal security, and our lifestyles

  26. Information & Communications Infrastructure • Future  public & private sectors must develop strategies & take actions to • Continually update the infrastructure to keep pace with technology • Increase capacity to respond to the rapid growth in information and communications technology-related services • Develop and design systems with a global perspective • Work to increase security and reliability • Consider issues of privacy • Actions will involve legal, regulatory, economic, business, & social considerations

  27. The Environment • Natural resource and environmental concerns • Increasing demand for energy • Fossil fuel supply • Increasing demand for potable water • Global deforestation • Global warming • Depletion of ozone layer

  28. Energy • California  projections for 2020 compared to 2000 usage (California Business, Transportation, and Housing Agency, 2001) • 40% more electrical capacity • 40% more gasoline • 20% more natural gas energy

  29. Fossil Fuel http://www.oilposter.org/

  30. Water • Within the next 20 years, virtually every nation will face some type of water supply problem (UN World Water Development Report, 2003) • China, India, and the United States • Produce half the world’s food • Are experiencing falling water tables • Presently • More than 1 billion people have little access to clean drinking water • 2 billion live in conditions of water scarcity • Future  water supplies will affect the world’s economy and its stability

  31. Global Deforestation • Global per capita forest area (Forest & Agriculture Organization of the United Nations, 1995) • Projected to fall to 1/3 of its 1990 value by 2020 • Due to population growth in tropical areas and shrinking forest area

  32. Sustainability • Ecologically sustainable practices must be developed and implemented to preserve our environment • In both industrialized and developing nations • Conservation must be combined with technological innovation • Engineers need to be educated to consider issues of sustainable development • “Green engineering” • Embed social and cultural objectives into traditional engineering focus on technical & economic viability

  33. Technology for an Aging Population • New technologies can help an aging population maintain healthy, productive lifestyles well beyond conventional retirement age • Engineering can address the challenges of aging • Assistive technology • Accommodate people of all ages who are challenged by physical or other limitations

  34. Technology for an Aging Population • Several areas for improved services for aging patients (Center for Aging Services Technologies, 2003) • Monitors, sensors, robots, and smart housing • Allow elderly to maintain independent lifestyles • Alleviate the burdens on care providers & government programs • Operational technologies that help service providers reduce labor costs or prevent medical errors • Connective technologies that help elderly communicate • Telemedicine • Provide basic or specialized services to patients in remote locations or to amplify access to medical services

  35. Conclusion • “The comfortable notion that a person learns all that he or she needs to know in a four-year engineering program just is not true and never was.” (NAE, 2004)

More Related