350 likes | 361 Views
This paper discusses the use of chaotic generators in digital secure communication and proposes a modified logistic map as a chaotic map for encryption. It also explores the applications and concludes with the distinction between random and chaotic signals.
E N D
Chaotic Generator in Digital Secure Communication 張 書 銘 交通大學應用數學系 smchang@math.nctu.edu.tw 2008 年 12 月 20 日
Outline • Chaos • Secure Communication • Chaotic Generator • Conclusions
Chaos • Chaos is “ mess, disorder, uncontrollable ! ? • Smoke of Cigarette Mike in coffee
Digital secure communication Transmitter Receiver Encryption Decryption Chaotic Encryption Unit Chaotic Decryption Unit Acquire Digital Data Source Digital Data Ciphertext Plaintext
Applications - 1 VoIP e-mail PSTN/PLMN Communication Information Ineternet/Intranet Wifi/WiMAX WEB Service ADSL/ISDN Transaction Entertainment ETC Digital content providor e-ATM Game/MOD Database
Properties of MLM • Chaotic map • No windows • Uniform distribution • Equivalent • Pseudorandom
MLM: uniform distribution r = 5.9
MLM: uniform distribution r = 10.8
Conclusions • Propose Modified Logistic Map (MLM) • Show that MLM is a chaotic map • (Devaney's definition) • No windows • Uniform distribution, equivalent • Pseudorandom
Random vs. Chaos Random numbers: Chaotic signals: Identity: 1. Continuous Spectrum 2. Correlation Function:
Random vs. Chaos 3. Stability: Observable: TemporalAveragefor (1): Perturbation: TemporalAveragefor (2):
Random vs. Chaos Distinction:
Further • Based on MLMs, we establish Modified Logistic Hyper-Chaotic System (MLHCS) • Apply MLHCS to develop a symmetric cryptography algorithm • Asymptotic Synchronization of Modified Logistic Hyper-Chaotic System (ASMLHCS)
Digital secure communication Transmitter Receiver Encryption Decryption MLHCS Encryption Unit ASMLHCS Decryption Unit Acquire Digital Data Source Digital Data Ciphertext Plaintext
References • S. M. Chang, M. C. Li and W. W. Lin, Asymptotic synchronization of modified logistic hyper-chaotic systems and its applications. Nonlinear Analysis: Real World Applications, Vol. 10, Issue 2 (2009), pp. 869–880. • S. M. Chang, T. C. Lin and W. W. Lin, Chaotic and Quasiperiodic Motions of Three Planar Charged Particles.Int. J. Bifurcation Chaos, Vol. 11, No. 7 (2001), pp. 1937–1951. • S. L. Chen, S. M. Chang, T. T. Hwang and W. W. Lin, Digital secure-communication using robust hyper-chaotic systems. Int. J. Bifurcation Chaos, Vol. 18, No. 11 (2008), pp. 1–14.