1 / 42

Taming the Wildcards: Combining Definition- and Use-Site Variance

Taming the Wildcards: Combining Definition- and Use-Site Variance. John Altidor. Motivation for Variance. Existing Approaches. Java only supports use-site variance. C# and Scala only support definition- site variance. What Is New Here: Combine Definition-Site and Use-Site Variance.

deliz
Download Presentation

Taming the Wildcards: Combining Definition- and Use-Site Variance

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Taming the Wildcards:Combining Definition- and Use-Site Variance John Altidor

  2. Motivation for Variance. Existing Approaches. Java only supports use-site variance. C# and Scala only support definition-site variance. What Is New Here:Combine Definition-Site and Use-Site Variance. Both in a single language, each using the other Case Study – Inferring Def-Site for Java. Insights into Formal Reasoning. Summary. Outline

  3. Software Reusability • Writing reusable software is hard; many factors: • Generality • Adaptability • Modularity • Simplicity of interface / Ease of use • … • Programming language support • Enable reusable code without introducing bugs. • Focus on integrating two flavors of genericity: • Generics – Parametric Polymorphism • Subtyping – Inclusion Polymorphism

  4. Example: Java inheritance. Subtyping – Inclusion Polymorphism class Animal { void speak() { } } class Dog extends Animal { void speak() { print(“bark”); } } class Cat extends Animal { void speak() { print(“meow”); } }

  5. Subtyping – Example Client void performSpeak(Animal animal) { animal.speak(); } Can be a Dog, Cat, or any other Animal.

  6. Common Code Structure class ListOfDogs { void add(Dognum) { … } Dogget(inti) { … } int size() { … } }

  7. Common Code Structure (cont.) class ListOfAnimals { void add(Animalnum) { … } Animalget(inti) { … } int size() { … } }

  8. Generics – Parametric Polymorphism type parameter class List<X> { void add(Xx) { … } X get(inti) { … } int size() { … } } write X read X no X • List<Animal> ≡ List of Animals • List<Dog>≡List of Dogs Customized Lists

  9. Dog <: Animal (Dog is an Animal). Cat <: Animal (Cat is an Animal). List<Dog> <: List<Animal> Generics and Subtyping No! • A List<Animal> can add a Cat to itself.A List<Dog> cannot.

  10. When is C<Expr1> a subtype of C<Expr2>? Variance Introduction class RList<X> { X get(inti) { … } int size() { … } } Can read from but not write to. • It is safe to assumeRList<Dog> <: RList<Animal>. • Why?

  11. Assuming Dog <: Animal (Dog is an Animal). Flavors of Variance - Covariance Generic<Dog> <: Generic<Animal> Covariance

  12. Assuming Dog <: Animal (Dog is an Animal). Flavors of Variance - Contravariance Generic<Dog> <: Generic<Animal> Contravariance

  13. How do programmers specify variance? Four Flavors of Variance

  14. Programmer specifies variance in definition as in Scala and C#. Variance of a type position. Return types: covariant. Arguments types: contravariant. Definition-Site Variance (C#/ Scala) class WList<-X> { void add(Xx) { … } int size() { … } // no method to get } class RList<+X> { X get(inti) { … } int size() { … } // no method to add }

  15. Use-Site Variance (Java Wildcards) class List<X> { void add(X x) { … } X get(inti) { … } int size() { … } }

  16. Use-Site Variance (Java Wildcards) List<? extends X> class List<X> { void add(X x) { … } X get(inti) { … } int size() { … } }

  17. Use-Site Variance (Java Wildcards) List<? super X> class List<X> { void add(X x) { … } X get(inti) { … } int size() { … } }

  18. Use-Site Variance (Java Wildcards) List<?> class List<X> { void add(X x) { … } X get(inti) { … } int size() { … } }

  19. Definition-Site: Pros • Conceptual Simplicity • Simpler Type Expressions – no use-site annotations. • Subtype policy stated in class definition. • Burden on library designers; not on users. • Classes declare variance once and for all uses. covariant class RList<+X> { ... } class WList<-X> { ... } class List<X> extends RList<X>, WList<X> { ... } contravariant invariant

  20. Definition-Site: Cons • Redundant Types • scala.collection.immutable.Map<A, +B> • scala.collection.mutable.Map<A, B> • Generic with n parameters ⇒ 3n interfaces (or 4n if bivariance is allowed) covariant class RList<+X> { ... } class WList<-X> { ... } class List<X> extends RList<X>, WList<X> { ... } contravariant invariant

  21. Use-Site: Pros • Flexibility: • co-, contra-, bivariant versions on the fly. • Easier on library designers • Design classes in natural way • No need for fractured classes. class List<X> { void add(X x) { … } X get(inti) { … } int size() { … } }

  22. Use-Site Cons: • Burden shifts to users of generics. • Library designers are often users as well. • Type signatures quickly become complicated. • Heavy variance annotation required for subtyping. • From ApacheCommons-Collections Library: Iterator<? extendsMap.Entry<? extends K, V>> createEntrySetIterator( Iterator<? extendsMap.Entry<? extends K, V>>)

  23. “We simply cannot afford another wildcards” – Joshua Bloch. “Simplifying Java Generics by Eliminating Wildcards” – Howard Lovatt. Wildcards Criticism Iterator<? extendsMap.Entry<? extends K, V>> createEntrySetIterator( Iterator<? extendsMap.Entry<? extends K, V>>)

  24. Take advantages. Remove disadvantages. Simpler type expressions than in Java(burden off clients). Less redundant type definitions in C# and Scala. Inferring definition-site variance from only use-site annotations. [1] Added notion of def-site variance without extending Java. VarLang Calculus: Denotational and language neutral approach. [1] PLDI 2011 (Altidor, Huang, Smaragdakis) Our Approach: Take Best of Both Worlds

  25. Fewer Wildcard Annotations Iterator<? extendsMap.Entry<? extends K, V>> createEntrySetIterator( Iterator<? extendsMap.Entry<? extends K, V>>) Iterator<Map.Entry<K, V>> createEntrySetIterator( Iterator<Map.Entry<K, V>>)

  26. VarLang Calculus • Language neutral approach. • Simplifies and generalizes all previous work. • Sample Applications: • Infer definition-site variance for Java. • Add use-site variance to C#.

  27. Variance Lattice • Ordering details later

  28. Java to VarLang Calculus class C<X> { X foo(C<? super X> arg1) { ... } void bar(D<? extends X> arg2) { ... } } class D<Y> { void baz(C<Y> arg3) { ... } } module C<X> { X+, C<-X>-, void+, D<+X>- } module D<Y> { void+, C<oY>- }

  29. Infer Definition-Site Variance • Def-Site Variance of C<X> = c = +. (C is covariant) • Def-Site Variance of D<Y>= –.(D is contravariant) module C<X> { X+, C<-X>-, void+, D<+X>- } module D<Y> { void+, C<oY>- }

  30. Case Study: Definition-Site Inference for Java • How much benefit if Java’s type system inferred definition-site variance? • Mapped Java classes to VarLang modules. • Applied inference to large, standard libraries • e.g., Sun’s JDK 1.6 • Example inferences • java.util.Iterator<E> is covariant. • java.util.Comparator<T>is contravariant.

  31. Sample Results from Case Study • Analysis was conservative (e.g. ignored method bodies). • “foo(List<Animal> arg)” could have been“foo(List<? extends Animal> arg)”. majority

  32. Insights into Formal Reasoning • Variance composition: v1⊗ v2 = v3 • Variance binary predicate: v(T; T’) • Variance lattice: v1≤ v2 • Variance of a type:var(X; T) • Relating variance to subtyping: Subtype Lifting Lemma • Variance of a position

  33. Ordered by subtype constraint Standard Modeling: Variance Lattice binary predicate

  34. When is C<Expr1> a subtype of C<Expr2>? What about existential types?∃X->[⊥-String].Stack<X> We answer a more general question:When is [U/X]T <: [U’/X]T? Key: defined very general predicate:var(X; T)= variance of type T with respect to type variable X. Variance of a Type

  35. var(X; Iterator<X>) = +and +(Dog; Animal) ≡ Dog <: AnimalimpliesIterator<Dog> <: Iterator<Animal> Subtype Lifting Lemma • We generalize Emir et al.’s subtype lifting lemma. • Goal property of var. If: v ≤var(X; T) v(U; U’) Then: [U/X]T <: [U’/X]T

  36. Variance of variable X in type A<B<C<X>>>? In general, variance of variable X in type C<E>? v1⊗v2 = v3. If: Variance of variable X in type expression E is v2. The def-site variance of class C is v1. Then: variance of X in C<E> is v3. Variance Composition Transform Operator

  37. Example Case: + ⊗ – = – Class C is covariant. Type E is contravariant in X. Need to show C<E> is contravariantin X. For any T1, T2: Deriving Transform Operator • Hence,C<E> is contravariantin X.

  38. Invariance transforms everything into invariance. Bivariance transforms everything into bivariance. Covariance preserves a variance. Contravariance reverses a variance. Summary of Transform

  39. Definition-site variance annotations are type checked using varpredicate. For further details: [2] ECOOP 2012 (Altidor, Reichenbach, Smaragdakis) Definition of var predicate

  40. General Theory – Template for Adding Variance • Variance composition: v1⊗ v2 = v3 • Variance binary predicate: v(T; T’) • Variance lattice: v1≤ v2 • Variance of a type:var(X; T) • Relating variance to subtyping: Subtype Lifting Lemma • Variance of a position: See [2] for derivation. A<B<C<X>>> Subtype Policy Comparing Variances Computing Variances Variance Soundness Check Def-Site Variance

  41. Generics and subtyping coexist fruitfully. Subtyping between two different instantiations. Combine def-site and use-site variance to reap their advantages and remove disadvantages. Generalize all previous related work. Resolve central questions in the design of any language involving parametric polymorphism and subtyping. Variance of a type. Variance of a position. Summary of Contributions

  42. To my collaborators: • Smaragdakis, Reichenbach, Huang, Palsberg, Tate, Cameron, Kennedy, Urban • To CLC for hosting.

More Related