1 / 15

BY4 – Metabolism, Microbiology and Homeostasis Learning objectives:

BY4 – Metabolism, Microbiology and Homeostasis Learning objectives:. To know the importance of chemical energy in biological processes To understand the role of ATP To draw the structure of ATP

delta
Download Presentation

BY4 – Metabolism, Microbiology and Homeostasis Learning objectives:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BY4 – Metabolism, Microbiology and HomeostasisLearning objectives: To know the importance of chemical energy in biological processes To understand the role of ATP To draw the structure of ATP To understand the stages in aerobic respiration: glycolysis, link reaction, Kreb’s cycle and the electron transport chain

  2. What processes do cells need energy for? Movement e.g. movement of cilia and flagella, muscle contraction 2. Maintaining a constant body temperature to provide optimum internal environment for enzymes to function 3. Active transport – to move molecules and ions across the cell surface membrane against a concentration gradient

  3. 4. Anabolic processes e.g. synthesis of polysaccharides from sugars and proteins from amino acids 5. Bioluminescence – converting chemical energy into light e.g. ‘glow worms’ 6. Secretion – the packaging and transport of secretory products into vesicles in cells e.g. in the pancreas

  4. Respiration • Energy is released in respiration • A series of oxidation reactions taking place inside living cells which releases energy to drive the metabolic activities that take place in cells Aerobic respiration – takes place in the presence of oxygen Anaerobic respiration – takes place in absence of oxygen

  5. The role of ATP (adenosine triphosphate) • The short term energy store of the cell • Often called the ‘energy currency’ of the cell because it picks up energy from food in respiration and passes it on to power cell processes. ATP made up of: Adenine (a base) Ribose (a pentose sugar) 3 phosphate groups Draw the structure of ATP on page 286

  6. How ATP releases energy • The 3 phosphate groups are joined together by 2 high energy bonds • ATP can be hydrolysed to break a bond which releases a large amount of energy • Hydrolysis of ATP to ADP (adenosine diphosphate) is catalysed by the enzyme ATPase (ATPase) ATP ADP + Pi + 30 KJ mol-1 (H2O) Draw the hydrolysis of ATP on page 286

  7. The 2nd phosphate group can also be removed by breaking another high energy bond. • The hydrolysis of ADP to AMP (adenosine monophosphate) releases a similar amount of energy (ATPase) ADP AMP + Pi + 30 KJ mol-1 (H2O) AMP and ADP can be converted back to ATP by the addition of phosphate molecules

  8. The production of ATP – by phosphorylation • Adding phosphate molecules to ADP and AMP to produce ATP Phosphorylation is an endergonic reaction – energy is used Hydrolysis of ATP is exergonic - energy is released

  9. Advantages of ATP • Instant source of energy in the cell • Releases energy in small amounts as needed • It is mobile and transports chemical energy to where it is needed IN the cell • Universal energy carrier and can be used in many different chemical reactions Answer sample past paper question on sheet

  10. Aerobic respiration –– to release energy 4 main stages CO2 glucose Krebs cycle Glycolysis FADH2 NADH pyruvate Electron transport chain Link reaction Hydrogen atoms Acetyl coenzyme A oxygen water

  11. 1. Glucose (6C) phosphorylated to Glucose phoshate (6C) Glycolysis -the splitting of glucose The phosphate comes from ATP 3. Glucose phosphate (6C) phosphorylated to fructose biphosphate (6C) 4. Fructose biphosphate (6C) is split into two molecules of glycerate 3 phosphate 6. H+ is removed and transferred to the hydrogen acceptor NAD (nicotinamide adenine dinucleotide) 5. Each Glycerate 3 –phosphate (3C) is converted to pyruvate (3C) 7. 2 x 2 ATP produced Draw glycolysis reaction on page 287

  12. Glycolysis in detail • Takes place in cytoplasm of cells • Does not need oxygen – first stage of aerobic respiration and only stage of anaerobic respiration • Although glycolysis yields energy it does need an input of energy to get the reaction started

  13. Glycolysis – overview Glycolysis produces from 1 molecule of glucose: • 2 molecules of ATP in total (4 ATP are produced but 2 are used at the start) • 2 molecules of NADH2 (reduced NAD) • 2 molecules of pyruvate to enter the link reaction

  14. The link reaction in mitochondria in presence of oxygen Pyruvate (3C) 2. Pyruvate dehydrogenated – hydrogen removed 1. Pyruvatedecarboxylated - CO2 removed NAD+ CO2 NADH + H+ Acetate (2C) 3. Acetate (2C) combines with coenzyme A Coenzyme A Acetyl coenzyme A Don’t forget this happens TWICE as 2 molecules of pyruvate are formed from each glucose molecule

  15. Krebs cyclein matrix of mitochondria Draw Krebs cycle on page 288

More Related