1 / 66

TAIGA experimnent: Ultra-high energy gamma-ray astronomy at Tunka Valley

TAIGA experimnent: Ultra-high energy gamma-ray astronomy at Tunka Valley. Leonid Kuzmichev Skobeltsyn Institute of Nuclear Physics MSU July 201 5 , B . Koty. Gamma-radiation > 0.1 MeV High energy gamma-ray astronomy > 1 GeV

denishat
Download Presentation

TAIGA experimnent: Ultra-high energy gamma-ray astronomy at Tunka Valley

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TAIGA experimnent: Ultra-high energy gamma-ray astronomyat Tunka Valley Leonid Kuzmichev Skobeltsyn Institute of Nuclear Physics MSU July 2015, B.Koty Gamma-radiation > 0.1 MeV High energy gamma-ray astronomy> 1 GeV Very high energy gamma-ray astronomy(VHE)> 100 GeV Ultra high ebergy gamma-ray astronomy(UHE) > 10 ТeV

  2. 2lectures • High-energy gamma-ray astronomy - introduction • 2. Gamma-ray observatory TAIGA • «Physics» of gammaа-ray astronomy • Origin of Cosmic rays • 2. Intrinsic structure of astrophysical objects • 2 Gamma-astronomy andcosmology • 3. Dark matter

  3. Lecture 1:High energy gamma-ray astronomy

  4. Plan 1.Introductions – aims of gamma-rays astronomy 2. Gamma-rays generation Synchrotron radiation Inverse Compton scattering Pi-0 decay 3. Absorption of gamma-rays 4. Gamma-rays and Super Nova Remnants (SNR) 5. Status of arrays and projects

  5. How we study Universe OK 1 TeV = 1012 eV 1 PeV = 1015 eV 1 EeV = 1018 eV 1 ZeV = 1021 eV

  6. Gamma-ray astronomy very successful part of astrophysics • 150 TeVsources • 2000 GeV sources • Instruments operation: • VERITAS • HESS • MAGIC • Fermi-Lat • Argo-YbJ • Tibet-III • 7. HAWC • Projects: • CTA - 2017-18 ? • LHAASO - 2017-2018( ?) • 3. TAIGA

  7. TeV hi PeV

  8. More than 100 local sources of gamma rays with energy >100 GeV

  9. For this energy range (> 30 TeV) (1-10 )km2 area arrays are needed

  10. Galactic gamma-rays sources

  11. 2. Gamma-rays generation • 1.Synchrotron radiation • 2. Inverse Compton scattering • 3. Pi-0 decay

  12. Synchrotron radiation νLarmor = 2.8 106 ( B/ 1 G) Гц νсинх.=3/2 νLarmor ( E / m c2 )3- X-rays Intensity ~ B2 flux of electrons

  13. Inverse Compton –effect on relict photons Cross sections: σ = σthom. ( S < (mc2)2 ) σ = σthom(mc2)2 / s ( S > (mc2)2 σтhom= 0.66 10-25 cm2 εγ ~10-4 -10-3 эВ Eγ ~εγ х ( E / mc2 )2 100 ТeV electron20 ТeVphotons

  14. Relation between fluxes and energy Photon from Inverse Compton -effect E γ = 2 ( εx / 0.1 keV) (B/10 µG)-1 Synchrotron radiation 1 erg ~ 1 TeV Flux of energy: f (E) = E2 dN/dE ( erg/cm2 sec) (f (Eγ)) inverseCompton f(εx) synchrotron = 0.1 (B/10 µG)-2

  15. Gamma-rays frompi-decay P + P π0 + All E γ~ 0.1 E p 2 γ Energy spectrum Energy spectrum of protons :A E –γ Energy spectrum of gamma-rays : В E-γ why?

  16. Synchroyton radiation Inverse Compton dNe / dE ~ E –αdNγ/dE ~ E-(α+1)/2

  17. Gamma ray fromprotons dN/dE ~ E-p - pi-0 - gamma-raysdN/dE ~ E -p From electrons dN/dE ~ E-p - gamma-raysdN/dE ~ E –(p+1).2

  18. Absorption ofgamma-rays γ + photon → e+ + e- University λ (Mpc) Galaxy Exp ( - l / λ) proton 1 Пэв 8 kpc 40 kpc

  19. Distance from the nearest galaxies LMC - 160 kpc SNR 1987 Androdema 2 Mpc M82 ( startburst galaxy) 4 Mpc Markarian 421 120 Mpc ( the nearest Blazar)

  20. 3.Gamma-astronomy and supernova remnants

  21. SNRs – main sourses of Galactic Cosmic rays 1.1933 – Baade and Zwicky– Explosion of SN – source of CR 2. 1949 – Fermi – first theory ofcosmic rays acceleration 3. 1963 – Ginzburg, Sirovatsky – transfer of 10% of kineticenergyof SNR КЛ is enough to explain intensity of CR 4. 1977 – 1978 -Krymsky, Bellat all – theory of acceleration on shock waves 5. 1993-1996 – Berezhkoet al. – nonlineralytheory acceleration. 6. 2003-2005 – Bell, Berezhko &Volk, Ptuskin &Zirakoshvily – amplification of magnetic field on the front ofshockwaves – Emax ~ Z · 1015 eV Cas A radio polarization in red (VLA), X-rays in green (CHANDRA), optical in blue (HST) SN explosion – 1053 erg Kinetic energy of - 1051 erg Rate- 1 per 30 y

  22. Observations nonthermal X-rays εkeV = 1 BμG(Ee/120 TeV)2 εmax ~ 100 TeV radio emission νMHz = 4.6 BμG (Ee,GeV )2 E = 50 MeV – 30 GeV (100 GeV for IR) γ = 1.9 – 2.5 We = 1048 – 1049 erg Ginzburg & Syrovatskii 1964 Shklovsky 1976 synchrotron γ e SNR inverse Compton εγ = ε0(Ee/mec2)2 γ p TeV γ– rays electrons/protons εmax ~ 100 TeV e π0 γ

  23. Cosmic Ray diffusive acceleration in Supernova Remnants ESN ~ 1051erg Krymsky 1977 Bell 1978 =hock compression ratio - is the shock compression ratio for strong shock Frequent scatterings of CRs on magnetic field irregularities in collisionless medium provide efficient acceleration of CRs at strong shock

  24. Maximum Energy Emax = U x R x B - Hillas rule Amplification of magnetic field By stream instability

  25. Magnetic field amplification –steaming instability ρISM Beff Results of modeling (Lucek & Bell, 2000) & theoretical considerations (Bell 2004; Pelletier et al. 2006; Zirakashvili et al. 2007)+ Spectral properties of SNR synchrotron emission + Fine structure of nonthermal X-ray emission VS BISM CR flux SNR magnetic field is considerably amplified L shock B ~ 200 n1/2 ( U/ 104 km/s ) 3/2 µG Beff2/8π ≈ 10-2ρISMVS2 Beff >> BISM Emax ~ 200 n1/2 ( U/ 104 km/s ) 2 Rpc TeV

  26. Chandra SN 1006 Chandra Cassiopeia A • Filamentary structure of X-ray emission • of young SNRs • consequence of strongly amplified magnetic field, • leading to strong synchrotron losses

  27. Dependence of Emax from time Emax ~ U R B ~ U2 R R = R0 ( t/t0) 2/5 Sedov solution t0 – beginning of Sedov phase t0 ~ n -1/3 M5/6 E1/2 - 100 -1000 years Emax ~ t -4/5

  28. «Cooling» ofelectrons T 1/2 - time of transfer energy from eletrons to gamma-rays dE/dt = b E2 W CMB = 0.25 eV/cm3 b = 4/3 (σT c )/ (mc2 )2 ( W CMB + B2/ 8π ) σT h = 6.6 10-25 cm2 Sychrotron radiation Hight-energy gamma-rays E (t ) = Eo/ ( 1 +bt E0) T1/2 = 1/bE0 For E0 =20 TeV T = 5 10 4 y W CMB / W B = 0.1 (B/10 µG )-2

  29. «Cooling» ofprotons : Ƭpp = 1/ ( ngas · c · k · σpp) = 6 x 107 ( n gas / 1 cm-3)-1год, k - inelasticity

  30. Relation between fluxesof-gamma-rays Fγ ( IC) = W e / T F γ (π ) = Wp /Ƭ Fγ ( IC) / F γ (π ) = 10 3 ( We/ Wp) (n/1 cm-3)-1 forEγ =1 TeV

  31. Derivation of DAV formula : Ƭpp = 1/ ( ngas · c · k · σpp) = 6 x 107 ( n gas / 1 cm-3) год, k - inelasticity P (E) = I x E-2 total energy = integralfrom 1 GeVto 1 PeV I x ln( 10^6) = 1050 erg I = 7x 10^48 erg c (P -γ) = 0.1 - part of proton energy transfered to gamma-ray Fγ (Eγ) E ^2 = I x c (P -γ) / (Ƭpp ( 4π d^2) ) = 10^(-11)  ( Wcr/ 10^50 erg) ( n gas / 1 cm-3 )  ( d/ 1kpc)^-2 erg / cm2 s

  32. SNR detected at TeV energies

  33. Molecular clouds : possibility tocatchPeVatrons If clouds is in a distance of 100 pc from SNR flux will be in 10 times smaller, but duration Will be in 20 time longer – near to 10000 y/ Mass (104 - 105 ) M of Sun Density ~100 g/ cm2 1% of Galaxy volume mostly from H2

  34. Gamma-ray astronomyand Crab nebular • Explosion in 1054 , distance 2 kp, • In the centre of nebular –pulsar with 33 ms period • First reliably registrated gamma-ray source • T.Weeks 1989. 9 RMS • Steady gamma-radiation – standard candle • “pulsate”gamma-radiation • Gamma «bursts»

  35. Inserlude: extensiveatmospheric showers (EAS)

  36. P, A Xmax – maximum of EASdevelompent increasingnumber of particles Хmax = A + B Ln( E/A) 20-30 km Atomic number Nmax  E number of particles Energy 3-5 км Half of the particle in the circle of 80 m Shower particles Shower core Energy of particles: Electrons: 30-100 MeV Muons 0.5 Gev Particle detectors

  37. P, A Registration of Chrenkov light forEe >25 MeV Ve > C/ n – speed of lightin the air Cos (tet) =1/n tet ~0.5 deg 20-30 km Cherenkov light Q tot  E Phononsdetectors

  38. Energy threshold of Cherenkov array Cherenkov pulse Sd– areaof PMT QE- quantum efficiency Pph– поток черенковских фотонов T - duration of pulse ( 10 - 20 ns)  - FOV Iф – night light background  3.1012 T Ss•Pph•QE signal 5 = noise  •Sд •Iф•T Pph ~ E - energy of EAS  Iф•  •T Ethersh~ m-2 sec1  Sд •  Sd~ 0.1 m2 иQE0.1 : Eth 200 ТeV

  39. How select gamma-shower from proton shower F( gamma) x S x T Signal (background )1.2 = = 5 (F(CR)x S x Ω x T)1/2 Background selection : Imagingatmospheric Cherenkov telescope poor muons showers ( in gamma showers in 30 times smaller muons than inproton shower) K signal, Kback –rejection factors. Q = K signal / sqrt ( K background)

  40. Short history of gamma-rays astronomy

  41. Cherenkov Technique used for Gamma Ray Astronomy Crimea Experiment 1959-1965, Chudakov, et al., (SNR, radio galaxies)

  42. First Gamma-ray Experiment at Whipple Observatory, 1967-68 The pioneer, the #1 in gamma astronomy

  43. The Pioneer Trevor Weekes and his 10m Ø Whipple telescope gave birth to g-ray astrophysics: 9s from Crab Nebula in 1988 ! „If a telescope can within a few s evaporate a solid piece of steel, it can also measure gamma rays“ ;-)

  44. Instruments

More Related